An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1
Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like protein...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2021-08, Vol.207 (3), p.888-901 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 901 |
---|---|
container_issue | 3 |
container_start_page | 888 |
container_title | The Journal of immunology (1950) |
container_volume | 207 |
creator | Liu, Long Deng, Cheng-Jie Duan, Ya-Li Ye, Chen-Jun Gong, Dao-Hua Guo, Xiao-Long Lee, Wen-Hui Zhou, Jumin Li, Sheng-An Zhang, Yun |
description | Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT–treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT–treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs. |
doi_str_mv | 10.4049/jimmunol.2001056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2554350243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554350243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1fea0b45ae0eea8351569f667f20cc378a5d9d489abadaddb2c51b74ceab3bc73</originalsourceid><addsrcrecordid>eNo10DFPwzAQhmELgUQp7IweWVLOcewkY1W1tFIlKlFYI8e5VC5OHOykov-eoMJ0y3Pf8BLyyGCWQJI_H03TDK2zsxiAgZBXZMKEgEhKkNdkAhDHEUtlekvuQjgCgIQ4mRA3b-kcvbPnYNrImk-kO-cxWjnfmPZAd971aFq6cE1n8ZvulT9gH-iH8crSZXtC6zqkvaObVunenFSPdI2-w0DfzOVntEOg-_Po2D25qZUN-PB3p-R9tdwv1tH29WWzmG8jzVnWR6xGBWUiFAKiyrhgQua1lGkdg9Y8zZSo8irJclWqSlVVGWvByjTRqEpe6pRPydNlt_Pua8DQF40JGq1VLbohFLEQCRdjAj5SuFDtXQge66LzplH-XDAoftsW_22Lv7b8B1h1cRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554350243</pqid></control><display><type>article</type><title>An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Long ; Deng, Cheng-Jie ; Duan, Ya-Li ; Ye, Chen-Jun ; Gong, Dao-Hua ; Guo, Xiao-Long ; Lee, Wen-Hui ; Zhou, Jumin ; Li, Sheng-An ; Zhang, Yun</creator><creatorcontrib>Liu, Long ; Deng, Cheng-Jie ; Duan, Ya-Li ; Ye, Chen-Jun ; Gong, Dao-Hua ; Guo, Xiao-Long ; Lee, Wen-Hui ; Zhou, Jumin ; Li, Sheng-An ; Zhang, Yun</creatorcontrib><description>Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT–treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT–treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.2001056</identifier><language>eng</language><ispartof>The Journal of immunology (1950), 2021-08, Vol.207 (3), p.888-901</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-1fea0b45ae0eea8351569f667f20cc378a5d9d489abadaddb2c51b74ceab3bc73</citedby><cites>FETCH-LOGICAL-c318t-1fea0b45ae0eea8351569f667f20cc378a5d9d489abadaddb2c51b74ceab3bc73</cites><orcidid>0000-0003-2621-5782 ; 0000-0001-9139-9472 ; 0000-0002-8636-183X ; 0000-0002-9654-076X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Deng, Cheng-Jie</creatorcontrib><creatorcontrib>Duan, Ya-Li</creatorcontrib><creatorcontrib>Ye, Chen-Jun</creatorcontrib><creatorcontrib>Gong, Dao-Hua</creatorcontrib><creatorcontrib>Guo, Xiao-Long</creatorcontrib><creatorcontrib>Lee, Wen-Hui</creatorcontrib><creatorcontrib>Zhou, Jumin</creatorcontrib><creatorcontrib>Li, Sheng-An</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><title>An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1</title><title>The Journal of immunology (1950)</title><description>Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT–treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT–treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.</description><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo10DFPwzAQhmELgUQp7IweWVLOcewkY1W1tFIlKlFYI8e5VC5OHOykov-eoMJ0y3Pf8BLyyGCWQJI_H03TDK2zsxiAgZBXZMKEgEhKkNdkAhDHEUtlekvuQjgCgIQ4mRA3b-kcvbPnYNrImk-kO-cxWjnfmPZAd971aFq6cE1n8ZvulT9gH-iH8crSZXtC6zqkvaObVunenFSPdI2-w0DfzOVntEOg-_Po2D25qZUN-PB3p-R9tdwv1tH29WWzmG8jzVnWR6xGBWUiFAKiyrhgQua1lGkdg9Y8zZSo8irJclWqSlVVGWvByjTRqEpe6pRPydNlt_Pua8DQF40JGq1VLbohFLEQCRdjAj5SuFDtXQge66LzplH-XDAoftsW_22Lv7b8B1h1cRQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Liu, Long</creator><creator>Deng, Cheng-Jie</creator><creator>Duan, Ya-Li</creator><creator>Ye, Chen-Jun</creator><creator>Gong, Dao-Hua</creator><creator>Guo, Xiao-Long</creator><creator>Lee, Wen-Hui</creator><creator>Zhou, Jumin</creator><creator>Li, Sheng-An</creator><creator>Zhang, Yun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2621-5782</orcidid><orcidid>https://orcid.org/0000-0001-9139-9472</orcidid><orcidid>https://orcid.org/0000-0002-8636-183X</orcidid><orcidid>https://orcid.org/0000-0002-9654-076X</orcidid></search><sort><creationdate>20210801</creationdate><title>An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1</title><author>Liu, Long ; Deng, Cheng-Jie ; Duan, Ya-Li ; Ye, Chen-Jun ; Gong, Dao-Hua ; Guo, Xiao-Long ; Lee, Wen-Hui ; Zhou, Jumin ; Li, Sheng-An ; Zhang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1fea0b45ae0eea8351569f667f20cc378a5d9d489abadaddb2c51b74ceab3bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Deng, Cheng-Jie</creatorcontrib><creatorcontrib>Duan, Ya-Li</creatorcontrib><creatorcontrib>Ye, Chen-Jun</creatorcontrib><creatorcontrib>Gong, Dao-Hua</creatorcontrib><creatorcontrib>Guo, Xiao-Long</creatorcontrib><creatorcontrib>Lee, Wen-Hui</creatorcontrib><creatorcontrib>Zhou, Jumin</creatorcontrib><creatorcontrib>Li, Sheng-An</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Long</au><au>Deng, Cheng-Jie</au><au>Duan, Ya-Li</au><au>Ye, Chen-Jun</au><au>Gong, Dao-Hua</au><au>Guo, Xiao-Long</au><au>Lee, Wen-Hui</au><au>Zhou, Jumin</au><au>Li, Sheng-An</au><au>Zhang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1</atitle><jtitle>The Journal of immunology (1950)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>207</volume><issue>3</issue><spage>888</spage><epage>901</epage><pages>888-901</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT–treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT–treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.</abstract><doi>10.4049/jimmunol.2001056</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2621-5782</orcidid><orcidid>https://orcid.org/0000-0001-9139-9472</orcidid><orcidid>https://orcid.org/0000-0002-8636-183X</orcidid><orcidid>https://orcid.org/0000-0002-9654-076X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2021-08, Vol.207 (3), p.888-901 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_proquest_miscellaneous_2554350243 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Aerolysin-like%20Pore-Forming%20Protein%20Complex%20Targets%20Viral%20Envelope%20to%20Inactivate%20Herpes%20Simplex%20Virus%20Type%201&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Liu,%20Long&rft.date=2021-08-01&rft.volume=207&rft.issue=3&rft.spage=888&rft.epage=901&rft.pages=888-901&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.2001056&rft_dat=%3Cproquest_cross%3E2554350243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554350243&rft_id=info:pmid/&rfr_iscdi=true |