Data Aggregation and Privacy Preserving Using Computational Intelligence

In today's smart world, the privacy protection of data is an important issue. Data is distributed, reproduced, and disclosed with extensive use of communication technologies. Many non-traditional challenges arise with the rapid increase of IoT devices for system design and implementation. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things magazine 2021-06, Vol.4 (2), p.60-64
Hauptverfasser: Khadam, Umair, Iqbal, Muhammad Munwar, Jabbar, Sohail, Shah, Syed Aziz
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 2
container_start_page 60
container_title IEEE internet of things magazine
container_volume 4
creator Khadam, Umair
Iqbal, Muhammad Munwar
Jabbar, Sohail
Shah, Syed Aziz
description In today's smart world, the privacy protection of data is an important issue. Data is distributed, reproduced, and disclosed with extensive use of communication technologies. Many non-traditional challenges arise with the rapid increase of IoT devices for system design and implementation. However, security and privacy are the main issues in IoT. With advanced technologies, an illegal copy of the content can easily be generated and shared. Therefore, it is crucial for users to protect and secure their data. In the said perspective, an efficient third-generation watermarking technique is proposed, which works on the computational intelligence model to insert a large amount of robust watermark and make an extra effort to hide more information than first and second-generation techniques. The Advanced Encryption Standard (AES) encryption algorithm is employed to guarantee secure communication, which has a significantly less computational cost. The proposed technique evaluated parameters including security, robustness, imperceptibility, and capacity. The results of the proposed technique are compared to existing text watermarking methods, which illustrates it is secure, robust, imperceptible, and inserts a large amount of watermark information through computational intelligence.
doi_str_mv 10.1109/IOTM.0001.2000010
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553593525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427291</ieee_id><sourcerecordid>2553593525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2560-f4d4b4539277a0e69f778965f1aa458ba59e7c0e2a6063ac81aacebad349483e3</originalsourceid><addsrcrecordid>eNo9kE1rwkAQhpfSQsX6A0ovOfYSu5_Z7FFsq4LFHvS8jOskbImJ3Y2C_75JFS_zDsMzw_AQ8szomDFq3har9deYUsrGnPZB78iAK52lghlzf-tz-khGMf50CGdccmEGZP4OLSSTsgxYQuubOoF6l3wHfwJ37hIjhpOvy2QT-zpt9odj-w9ClSzqFqvKl1g7fCIPBVQRR9ccks3nx3o6T5er2WI6WaaOq4ymhdzJrVTCcK2BYmYKrXOTqYIBSJVvQRnUjiKHjGYCXN7NHW5hJ6SRuUAxJK-Xu4fQ_B4xtnbvo-vegBqbY7RcKaGMUFx1KLugLjQxBizsIfg9hLNl1PbibC_O9sbsVVy383LZ8Yh4443kmhsm_gBd4mkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2553593525</pqid></control><display><type>magazinearticle</type><title>Data Aggregation and Privacy Preserving Using Computational Intelligence</title><source>IEEE Electronic Library (IEL)</source><creator>Khadam, Umair ; Iqbal, Muhammad Munwar ; Jabbar, Sohail ; Shah, Syed Aziz</creator><creatorcontrib>Khadam, Umair ; Iqbal, Muhammad Munwar ; Jabbar, Sohail ; Shah, Syed Aziz</creatorcontrib><description>In today's smart world, the privacy protection of data is an important issue. Data is distributed, reproduced, and disclosed with extensive use of communication technologies. Many non-traditional challenges arise with the rapid increase of IoT devices for system design and implementation. However, security and privacy are the main issues in IoT. With advanced technologies, an illegal copy of the content can easily be generated and shared. Therefore, it is crucial for users to protect and secure their data. In the said perspective, an efficient third-generation watermarking technique is proposed, which works on the computational intelligence model to insert a large amount of robust watermark and make an extra effort to hide more information than first and second-generation techniques. The Advanced Encryption Standard (AES) encryption algorithm is employed to guarantee secure communication, which has a significantly less computational cost. The proposed technique evaluated parameters including security, robustness, imperceptibility, and capacity. The results of the proposed technique are compared to existing text watermarking methods, which illustrates it is secure, robust, imperceptible, and inserts a large amount of watermark information through computational intelligence.</description><identifier>ISSN: 2576-3180</identifier><identifier>EISSN: 2576-3199</identifier><identifier>DOI: 10.1109/IOTM.0001.2000010</identifier><identifier>CODEN: IJMAJI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Authentication ; Computational intelligence ; Data privacy ; Encoding ; Encryption ; Privacy ; Security ; Watermarking</subject><ispartof>IEEE internet of things magazine, 2021-06, Vol.4 (2), p.60-64</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2560-f4d4b4539277a0e69f778965f1aa458ba59e7c0e2a6063ac81aacebad349483e3</citedby><cites>FETCH-LOGICAL-c2560-f4d4b4539277a0e69f778965f1aa458ba59e7c0e2a6063ac81aacebad349483e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9427291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khadam, Umair</creatorcontrib><creatorcontrib>Iqbal, Muhammad Munwar</creatorcontrib><creatorcontrib>Jabbar, Sohail</creatorcontrib><creatorcontrib>Shah, Syed Aziz</creatorcontrib><title>Data Aggregation and Privacy Preserving Using Computational Intelligence</title><title>IEEE internet of things magazine</title><addtitle>MIOT</addtitle><description>In today's smart world, the privacy protection of data is an important issue. Data is distributed, reproduced, and disclosed with extensive use of communication technologies. Many non-traditional challenges arise with the rapid increase of IoT devices for system design and implementation. However, security and privacy are the main issues in IoT. With advanced technologies, an illegal copy of the content can easily be generated and shared. Therefore, it is crucial for users to protect and secure their data. In the said perspective, an efficient third-generation watermarking technique is proposed, which works on the computational intelligence model to insert a large amount of robust watermark and make an extra effort to hide more information than first and second-generation techniques. The Advanced Encryption Standard (AES) encryption algorithm is employed to guarantee secure communication, which has a significantly less computational cost. The proposed technique evaluated parameters including security, robustness, imperceptibility, and capacity. The results of the proposed technique are compared to existing text watermarking methods, which illustrates it is secure, robust, imperceptible, and inserts a large amount of watermark information through computational intelligence.</description><subject>Authentication</subject><subject>Computational intelligence</subject><subject>Data privacy</subject><subject>Encoding</subject><subject>Encryption</subject><subject>Privacy</subject><subject>Security</subject><subject>Watermarking</subject><issn>2576-3180</issn><issn>2576-3199</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwkAQhpfSQsX6A0ovOfYSu5_Z7FFsq4LFHvS8jOskbImJ3Y2C_75JFS_zDsMzw_AQ8szomDFq3har9deYUsrGnPZB78iAK52lghlzf-tz-khGMf50CGdccmEGZP4OLSSTsgxYQuubOoF6l3wHfwJ37hIjhpOvy2QT-zpt9odj-w9ClSzqFqvKl1g7fCIPBVQRR9ccks3nx3o6T5er2WI6WaaOq4ymhdzJrVTCcK2BYmYKrXOTqYIBSJVvQRnUjiKHjGYCXN7NHW5hJ6SRuUAxJK-Xu4fQ_B4xtnbvo-vegBqbY7RcKaGMUFx1KLugLjQxBizsIfg9hLNl1PbibC_O9sbsVVy383LZ8Yh4443kmhsm_gBd4mkt</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Khadam, Umair</creator><creator>Iqbal, Muhammad Munwar</creator><creator>Jabbar, Sohail</creator><creator>Shah, Syed Aziz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Data Aggregation and Privacy Preserving Using Computational Intelligence</title><author>Khadam, Umair ; Iqbal, Muhammad Munwar ; Jabbar, Sohail ; Shah, Syed Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2560-f4d4b4539277a0e69f778965f1aa458ba59e7c0e2a6063ac81aacebad349483e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Authentication</topic><topic>Computational intelligence</topic><topic>Data privacy</topic><topic>Encoding</topic><topic>Encryption</topic><topic>Privacy</topic><topic>Security</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khadam, Umair</creatorcontrib><creatorcontrib>Iqbal, Muhammad Munwar</creatorcontrib><creatorcontrib>Jabbar, Sohail</creatorcontrib><creatorcontrib>Shah, Syed Aziz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khadam, Umair</au><au>Iqbal, Muhammad Munwar</au><au>Jabbar, Sohail</au><au>Shah, Syed Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Aggregation and Privacy Preserving Using Computational Intelligence</atitle><jtitle>IEEE internet of things magazine</jtitle><stitle>MIOT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>4</volume><issue>2</issue><spage>60</spage><epage>64</epage><pages>60-64</pages><issn>2576-3180</issn><eissn>2576-3199</eissn><coden>IJMAJI</coden><abstract>In today's smart world, the privacy protection of data is an important issue. Data is distributed, reproduced, and disclosed with extensive use of communication technologies. Many non-traditional challenges arise with the rapid increase of IoT devices for system design and implementation. However, security and privacy are the main issues in IoT. With advanced technologies, an illegal copy of the content can easily be generated and shared. Therefore, it is crucial for users to protect and secure their data. In the said perspective, an efficient third-generation watermarking technique is proposed, which works on the computational intelligence model to insert a large amount of robust watermark and make an extra effort to hide more information than first and second-generation techniques. The Advanced Encryption Standard (AES) encryption algorithm is employed to guarantee secure communication, which has a significantly less computational cost. The proposed technique evaluated parameters including security, robustness, imperceptibility, and capacity. The results of the proposed technique are compared to existing text watermarking methods, which illustrates it is secure, robust, imperceptible, and inserts a large amount of watermark information through computational intelligence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/IOTM.0001.2000010</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3180
ispartof IEEE internet of things magazine, 2021-06, Vol.4 (2), p.60-64
issn 2576-3180
2576-3199
language eng
recordid cdi_proquest_miscellaneous_2553593525
source IEEE Electronic Library (IEL)
subjects Authentication
Computational intelligence
Data privacy
Encoding
Encryption
Privacy
Security
Watermarking
title Data Aggregation and Privacy Preserving Using Computational Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Aggregation%20and%20Privacy%20Preserving%20Using%20Computational%20Intelligence&rft.jtitle=IEEE%20internet%20of%20things%20magazine&rft.au=Khadam,%20Umair&rft.date=2021-06-01&rft.volume=4&rft.issue=2&rft.spage=60&rft.epage=64&rft.pages=60-64&rft.issn=2576-3180&rft.eissn=2576-3199&rft.coden=IJMAJI&rft_id=info:doi/10.1109/IOTM.0001.2000010&rft_dat=%3Cproquest_RIE%3E2553593525%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553593525&rft_id=info:pmid/&rft_ieee_id=9427291&rfr_iscdi=true