Cleaving arene rings for acyclic alkenylnitrile synthesis

Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge 1 – 6 . Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-09, Vol.597 (7874), p.64-69
Hauptverfasser: Qiu, Xu, Sang, Yueqian, Wu, Hao, Xue, Xiao-Song, Yan, Zixi, Wang, Yachong, Cheng, Zengrui, Wang, Xiaoyang, Tan, Hui, Song, Song, Zhang, Guisheng, Zhang, Xiaohui, Houk, K. N., Jiao, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 7874
container_start_page 64
container_title Nature (London)
container_volume 597
creator Qiu, Xu
Sang, Yueqian
Wu, Hao
Xue, Xiao-Song
Yan, Zixi
Wang, Yachong
Cheng, Zengrui
Wang, Xiaoyang
Tan, Hui
Song, Song
Zhang, Guisheng
Zhang, Xiaohui
Houk, K. N.
Jiao, Ning
description Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge 1 – 6 . Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds 7 , 8 , and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited 9 – 11 . Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology. Common aromatic rings, such as anilines, arylboronic acids and aryl halides, can be opened up and converted to alkenyl nitriles through carbon–carbon bond cleavage using a copper catalyst.
doi_str_mv 10.1038/s41586-021-03801-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553521431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553521431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-aa6a3c6e5dd1778b255baef0ea3c502ee088b13418c0952d70626a969c5f2b043</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuCGzfRm6RJ06UM_sGAG12HNHOrGTPtmHSEvr0ZKwguXOXmcr4v4RByzuCKgdDXqWRSKwqc0XwFRscDMmNlpWipdHVIZgBcU9BCHZOTlNYAIFlVzki9CGg_ffda2IgdFjGPqWj7WFg3uuBdYcM7dmPo_BB9wCKN3fCGyadTctTakPDs55yTl7vb58UDXT7dPy5ultQJyQdqrbLCKZSrFasq3XApG4stYN5K4IigdcNEybSDWvJVBYorW6vayZY3UIo5uZx6t7H_2GEazMYnhyHYDvtdMrkwP8RKwTJ68Qdd97vY5d9lStXZkajrTPGJcrFPKWJrttFvbBwNA7O3aSabJts03zbNmENiCqXtXhHG3-p_Ul-2_ndi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569415399</pqid></control><display><type>article</type><title>Cleaving arene rings for acyclic alkenylnitrile synthesis</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Qiu, Xu ; Sang, Yueqian ; Wu, Hao ; Xue, Xiao-Song ; Yan, Zixi ; Wang, Yachong ; Cheng, Zengrui ; Wang, Xiaoyang ; Tan, Hui ; Song, Song ; Zhang, Guisheng ; Zhang, Xiaohui ; Houk, K. N. ; Jiao, Ning</creator><creatorcontrib>Qiu, Xu ; Sang, Yueqian ; Wu, Hao ; Xue, Xiao-Song ; Yan, Zixi ; Wang, Yachong ; Cheng, Zengrui ; Wang, Xiaoyang ; Tan, Hui ; Song, Song ; Zhang, Guisheng ; Zhang, Xiaohui ; Houk, K. N. ; Jiao, Ning</creatorcontrib><description>Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge 1 – 6 . Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds 7 , 8 , and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited 9 – 11 . Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology. Common aromatic rings, such as anilines, arylboronic acids and aryl halides, can be opened up and converted to alkenyl nitriles through carbon–carbon bond cleavage using a copper catalyst.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03801-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/549 ; 639/638/563 ; 639/638/77/888 ; Acids ; Adipic acid ; Aniline ; Aromatic compounds ; Aromaticity ; Azide ; Bacteria ; Biodegradation ; Carbon ; Catalysts ; Chemical bonds ; Chemical synthesis ; Chemistry ; Cleavage ; Coal liquefaction ; Coordination compounds ; Copper ; Copper converters ; Cyclic compounds ; Ductile-brittle transition ; Halides ; Humanities and Social Sciences ; Hydrocarbons ; Liquefaction ; Metal complexes ; multidisciplinary ; Nitriles ; Nitrogen ; Polarity ; Polymers ; Ring opening ; Salts ; Science ; Science (multidisciplinary) ; Transition metal compounds</subject><ispartof>Nature (London), 2021-09, Vol.597 (7874), p.64-69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Sep 2, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-aa6a3c6e5dd1778b255baef0ea3c502ee088b13418c0952d70626a969c5f2b043</citedby><cites>FETCH-LOGICAL-c352t-aa6a3c6e5dd1778b255baef0ea3c502ee088b13418c0952d70626a969c5f2b043</cites><orcidid>0000-0003-4541-8702 ; 0000-0002-9559-3624 ; 0000-0003-0290-9034 ; 0000-0002-8387-5261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03801-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03801-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Qiu, Xu</creatorcontrib><creatorcontrib>Sang, Yueqian</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Xue, Xiao-Song</creatorcontrib><creatorcontrib>Yan, Zixi</creatorcontrib><creatorcontrib>Wang, Yachong</creatorcontrib><creatorcontrib>Cheng, Zengrui</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Song</creatorcontrib><creatorcontrib>Zhang, Guisheng</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Jiao, Ning</creatorcontrib><title>Cleaving arene rings for acyclic alkenylnitrile synthesis</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge 1 – 6 . Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds 7 , 8 , and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited 9 – 11 . Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology. Common aromatic rings, such as anilines, arylboronic acids and aryl halides, can be opened up and converted to alkenyl nitriles through carbon–carbon bond cleavage using a copper catalyst.</description><subject>639/638/403/933</subject><subject>639/638/549</subject><subject>639/638/563</subject><subject>639/638/77/888</subject><subject>Acids</subject><subject>Adipic acid</subject><subject>Aniline</subject><subject>Aromatic compounds</subject><subject>Aromaticity</subject><subject>Azide</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Cleavage</subject><subject>Coal liquefaction</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Cyclic compounds</subject><subject>Ductile-brittle transition</subject><subject>Halides</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Liquefaction</subject><subject>Metal complexes</subject><subject>multidisciplinary</subject><subject>Nitriles</subject><subject>Nitrogen</subject><subject>Polarity</subject><subject>Polymers</subject><subject>Ring opening</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transition metal compounds</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuCGzfRm6RJ06UM_sGAG12HNHOrGTPtmHSEvr0ZKwguXOXmcr4v4RByzuCKgdDXqWRSKwqc0XwFRscDMmNlpWipdHVIZgBcU9BCHZOTlNYAIFlVzki9CGg_ffda2IgdFjGPqWj7WFg3uuBdYcM7dmPo_BB9wCKN3fCGyadTctTakPDs55yTl7vb58UDXT7dPy5ultQJyQdqrbLCKZSrFasq3XApG4stYN5K4IigdcNEybSDWvJVBYorW6vayZY3UIo5uZx6t7H_2GEazMYnhyHYDvtdMrkwP8RKwTJ68Qdd97vY5d9lStXZkajrTPGJcrFPKWJrttFvbBwNA7O3aSabJts03zbNmENiCqXtXhHG3-p_Ul-2_ndi</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>Qiu, Xu</creator><creator>Sang, Yueqian</creator><creator>Wu, Hao</creator><creator>Xue, Xiao-Song</creator><creator>Yan, Zixi</creator><creator>Wang, Yachong</creator><creator>Cheng, Zengrui</creator><creator>Wang, Xiaoyang</creator><creator>Tan, Hui</creator><creator>Song, Song</creator><creator>Zhang, Guisheng</creator><creator>Zhang, Xiaohui</creator><creator>Houk, K. N.</creator><creator>Jiao, Ning</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4541-8702</orcidid><orcidid>https://orcid.org/0000-0002-9559-3624</orcidid><orcidid>https://orcid.org/0000-0003-0290-9034</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid></search><sort><creationdate>20210902</creationdate><title>Cleaving arene rings for acyclic alkenylnitrile synthesis</title><author>Qiu, Xu ; Sang, Yueqian ; Wu, Hao ; Xue, Xiao-Song ; Yan, Zixi ; Wang, Yachong ; Cheng, Zengrui ; Wang, Xiaoyang ; Tan, Hui ; Song, Song ; Zhang, Guisheng ; Zhang, Xiaohui ; Houk, K. N. ; Jiao, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-aa6a3c6e5dd1778b255baef0ea3c502ee088b13418c0952d70626a969c5f2b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/933</topic><topic>639/638/549</topic><topic>639/638/563</topic><topic>639/638/77/888</topic><topic>Acids</topic><topic>Adipic acid</topic><topic>Aniline</topic><topic>Aromatic compounds</topic><topic>Aromaticity</topic><topic>Azide</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Cleavage</topic><topic>Coal liquefaction</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Cyclic compounds</topic><topic>Ductile-brittle transition</topic><topic>Halides</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Liquefaction</topic><topic>Metal complexes</topic><topic>multidisciplinary</topic><topic>Nitriles</topic><topic>Nitrogen</topic><topic>Polarity</topic><topic>Polymers</topic><topic>Ring opening</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xu</creatorcontrib><creatorcontrib>Sang, Yueqian</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Xue, Xiao-Song</creatorcontrib><creatorcontrib>Yan, Zixi</creatorcontrib><creatorcontrib>Wang, Yachong</creatorcontrib><creatorcontrib>Cheng, Zengrui</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Song</creatorcontrib><creatorcontrib>Zhang, Guisheng</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Houk, K. N.</creatorcontrib><creatorcontrib>Jiao, Ning</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xu</au><au>Sang, Yueqian</au><au>Wu, Hao</au><au>Xue, Xiao-Song</au><au>Yan, Zixi</au><au>Wang, Yachong</au><au>Cheng, Zengrui</au><au>Wang, Xiaoyang</au><au>Tan, Hui</au><au>Song, Song</au><au>Zhang, Guisheng</au><au>Zhang, Xiaohui</au><au>Houk, K. N.</au><au>Jiao, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cleaving arene rings for acyclic alkenylnitrile synthesis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2021-09-02</date><risdate>2021</risdate><volume>597</volume><issue>7874</issue><spage>64</spage><epage>69</epage><pages>64-69</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Synthetic chemistry is built around the formation of carbon–carbon bonds. However, the development of methods for selective carbon–carbon bond cleavage is a largely unmet challenge 1 – 6 . Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon–carbon bonds 7 , 8 , and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited 9 – 11 . Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon–carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology. Common aromatic rings, such as anilines, arylboronic acids and aryl halides, can be opened up and converted to alkenyl nitriles through carbon–carbon bond cleavage using a copper catalyst.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-021-03801-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4541-8702</orcidid><orcidid>https://orcid.org/0000-0002-9559-3624</orcidid><orcidid>https://orcid.org/0000-0003-0290-9034</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-09, Vol.597 (7874), p.64-69
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2553521431
source SpringerLink Journals; Nature Journals Online
subjects 639/638/403/933
639/638/549
639/638/563
639/638/77/888
Acids
Adipic acid
Aniline
Aromatic compounds
Aromaticity
Azide
Bacteria
Biodegradation
Carbon
Catalysts
Chemical bonds
Chemical synthesis
Chemistry
Cleavage
Coal liquefaction
Coordination compounds
Copper
Copper converters
Cyclic compounds
Ductile-brittle transition
Halides
Humanities and Social Sciences
Hydrocarbons
Liquefaction
Metal complexes
multidisciplinary
Nitriles
Nitrogen
Polarity
Polymers
Ring opening
Salts
Science
Science (multidisciplinary)
Transition metal compounds
title Cleaving arene rings for acyclic alkenylnitrile synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cleaving%20arene%20rings%20for%20acyclic%20alkenylnitrile%20synthesis&rft.jtitle=Nature%20(London)&rft.au=Qiu,%20Xu&rft.date=2021-09-02&rft.volume=597&rft.issue=7874&rft.spage=64&rft.epage=69&rft.pages=64-69&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03801-y&rft_dat=%3Cproquest_cross%3E2553521431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569415399&rft_id=info:pmid/&rfr_iscdi=true