Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury

Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2021-10, Vol.58 (10), p.5253-5271
Hauptverfasser: Wu, Mimi, Gu, Xiaoping, Ma, Zhengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5271
container_issue 10
container_start_page 5253
container_title Molecular neurobiology
container_volume 58
creator Wu, Mimi
Gu, Xiaoping
Ma, Zhengliang
description Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
doi_str_mv 10.1007/s12035-021-02494-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553238523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579873699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</originalsourceid><addsrcrecordid>eNp9kMlKBDEQhoMoOi4v4EEavHhpTVJZjzK4DCii6DmkM2ntoaczJt2HufkOvqFPYnRcwIOHUJD66k_qQ2if4GOCsTxJhGLgJaYkH6ZZqdbQiHCuS0IUXUcjrDSUUjC1hbZTmmFMKcFyE20Bo5JjJUfo4rrpg3sK3TQ2ti1uB9s2_bIYh66PoS2arhj76KuYe5Pknvy8sW8vr3d-4WM9pCZ0xaSbDXG5izZq2ya_91V30MP52f34sry6uZiMT69KB5L35RSs8ApqxqaOcKcoQCXyjdW1E1YyW2OggtcEnGDcMSFF3sGC1lSQqgLYQUer3EUMz4NPvZk3yfm2tZ0PQzKUc6CgOP1AD_-gszDELv8uU1IrCULrTNEV5WJIKfraLGIzt3FpCDYfms1Ks8mazadmo_LQwVf0UM399Gfk22sGYAWk3Ooeffx9-5_Yd6zvh7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579873699</pqid></control><display><type>article</type><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</creator><creatorcontrib>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</creatorcontrib><description>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-021-02494-8</identifier><identifier>PMID: 34275087</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Antioxidants - administration &amp; dosage ; Apoptosis ; Autophagy ; Biomedical and Life Sciences ; Biomedicine ; Blood flow ; Brain Ischemia - drug therapy ; Brain Ischemia - metabolism ; Brain Ischemia - pathology ; Cell Biology ; Humans ; Ischemia ; Ischemic Stroke - drug therapy ; Ischemic Stroke - metabolism ; Ischemic Stroke - pathology ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Dynamics - drug effects ; Mitochondrial Dynamics - physiology ; Mitophagy - drug effects ; Mitophagy - physiology ; Neurobiology ; Neurology ; Neurosciences ; Nicorandil - administration &amp; dosage ; Phagocytosis ; Quality control ; Reactive oxygen species ; Reperfusion ; Reperfusion Injury - drug therapy ; Reperfusion Injury - metabolism ; Reperfusion Injury - pathology ; Stroke ; Vasodilator Agents - administration &amp; dosage</subject><ispartof>Molecular neurobiology, 2021-10, Vol.58 (10), p.5253-5271</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</citedby><cites>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</cites><orcidid>0000-0001-6915-2860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-021-02494-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-021-02494-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34275087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Mimi</creatorcontrib><creatorcontrib>Gu, Xiaoping</creatorcontrib><creatorcontrib>Ma, Zhengliang</creatorcontrib><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</description><subject>Animals</subject><subject>Antioxidants - administration &amp; dosage</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Brain Ischemia - drug therapy</subject><subject>Brain Ischemia - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Cell Biology</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Ischemic Stroke - drug therapy</subject><subject>Ischemic Stroke - metabolism</subject><subject>Ischemic Stroke - pathology</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Mitochondrial Dynamics - physiology</subject><subject>Mitophagy - drug effects</subject><subject>Mitophagy - physiology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nicorandil - administration &amp; dosage</subject><subject>Phagocytosis</subject><subject>Quality control</subject><subject>Reactive oxygen species</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - metabolism</subject><subject>Reperfusion Injury - pathology</subject><subject>Stroke</subject><subject>Vasodilator Agents - administration &amp; dosage</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMlKBDEQhoMoOi4v4EEavHhpTVJZjzK4DCii6DmkM2ntoaczJt2HufkOvqFPYnRcwIOHUJD66k_qQ2if4GOCsTxJhGLgJaYkH6ZZqdbQiHCuS0IUXUcjrDSUUjC1hbZTmmFMKcFyE20Bo5JjJUfo4rrpg3sK3TQ2ti1uB9s2_bIYh66PoS2arhj76KuYe5Pknvy8sW8vr3d-4WM9pCZ0xaSbDXG5izZq2ya_91V30MP52f34sry6uZiMT69KB5L35RSs8ApqxqaOcKcoQCXyjdW1E1YyW2OggtcEnGDcMSFF3sGC1lSQqgLYQUer3EUMz4NPvZk3yfm2tZ0PQzKUc6CgOP1AD_-gszDELv8uU1IrCULrTNEV5WJIKfraLGIzt3FpCDYfms1Ks8mazadmo_LQwVf0UM399Gfk22sGYAWk3Ooeffx9-5_Yd6zvh7I</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wu, Mimi</creator><creator>Gu, Xiaoping</creator><creator>Ma, Zhengliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6915-2860</orcidid></search><sort><creationdate>20211001</creationdate><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><author>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antioxidants - administration &amp; dosage</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Brain Ischemia - drug therapy</topic><topic>Brain Ischemia - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Cell Biology</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Ischemic Stroke - drug therapy</topic><topic>Ischemic Stroke - metabolism</topic><topic>Ischemic Stroke - pathology</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Mitochondrial Dynamics - physiology</topic><topic>Mitophagy - drug effects</topic><topic>Mitophagy - physiology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nicorandil - administration &amp; dosage</topic><topic>Phagocytosis</topic><topic>Quality control</topic><topic>Reactive oxygen species</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - metabolism</topic><topic>Reperfusion Injury - pathology</topic><topic>Stroke</topic><topic>Vasodilator Agents - administration &amp; dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mimi</creatorcontrib><creatorcontrib>Gu, Xiaoping</creatorcontrib><creatorcontrib>Ma, Zhengliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mimi</au><au>Gu, Xiaoping</au><au>Ma, Zhengliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>58</volume><issue>10</issue><spage>5253</spage><epage>5271</epage><pages>5253-5271</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34275087</pmid><doi>10.1007/s12035-021-02494-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6915-2860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2021-10, Vol.58 (10), p.5253-5271
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_2553238523
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Antioxidants - administration & dosage
Apoptosis
Autophagy
Biomedical and Life Sciences
Biomedicine
Blood flow
Brain Ischemia - drug therapy
Brain Ischemia - metabolism
Brain Ischemia - pathology
Cell Biology
Humans
Ischemia
Ischemic Stroke - drug therapy
Ischemic Stroke - metabolism
Ischemic Stroke - pathology
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial Dynamics - drug effects
Mitochondrial Dynamics - physiology
Mitophagy - drug effects
Mitophagy - physiology
Neurobiology
Neurology
Neurosciences
Nicorandil - administration & dosage
Phagocytosis
Quality control
Reactive oxygen species
Reperfusion
Reperfusion Injury - drug therapy
Reperfusion Injury - metabolism
Reperfusion Injury - pathology
Stroke
Vasodilator Agents - administration & dosage
title Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Quality%20Control%20in%20Cerebral%20Ischemia%E2%80%93Reperfusion%20Injury&rft.jtitle=Molecular%20neurobiology&rft.au=Wu,%20Mimi&rft.date=2021-10-01&rft.volume=58&rft.issue=10&rft.spage=5253&rft.epage=5271&rft.pages=5253-5271&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-021-02494-8&rft_dat=%3Cproquest_cross%3E2579873699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579873699&rft_id=info:pmid/34275087&rfr_iscdi=true