Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2021-10, Vol.58 (10), p.5253-5271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5271 |
---|---|
container_issue | 10 |
container_start_page | 5253 |
container_title | Molecular neurobiology |
container_volume | 58 |
creator | Wu, Mimi Gu, Xiaoping Ma, Zhengliang |
description | Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury. |
doi_str_mv | 10.1007/s12035-021-02494-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553238523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579873699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</originalsourceid><addsrcrecordid>eNp9kMlKBDEQhoMoOi4v4EEavHhpTVJZjzK4DCii6DmkM2ntoaczJt2HufkOvqFPYnRcwIOHUJD66k_qQ2if4GOCsTxJhGLgJaYkH6ZZqdbQiHCuS0IUXUcjrDSUUjC1hbZTmmFMKcFyE20Bo5JjJUfo4rrpg3sK3TQ2ti1uB9s2_bIYh66PoS2arhj76KuYe5Pknvy8sW8vr3d-4WM9pCZ0xaSbDXG5izZq2ya_91V30MP52f34sry6uZiMT69KB5L35RSs8ApqxqaOcKcoQCXyjdW1E1YyW2OggtcEnGDcMSFF3sGC1lSQqgLYQUer3EUMz4NPvZk3yfm2tZ0PQzKUc6CgOP1AD_-gszDELv8uU1IrCULrTNEV5WJIKfraLGIzt3FpCDYfms1Ks8mazadmo_LQwVf0UM399Gfk22sGYAWk3Ooeffx9-5_Yd6zvh7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579873699</pqid></control><display><type>article</type><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</creator><creatorcontrib>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</creatorcontrib><description>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-021-02494-8</identifier><identifier>PMID: 34275087</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Antioxidants - administration & dosage ; Apoptosis ; Autophagy ; Biomedical and Life Sciences ; Biomedicine ; Blood flow ; Brain Ischemia - drug therapy ; Brain Ischemia - metabolism ; Brain Ischemia - pathology ; Cell Biology ; Humans ; Ischemia ; Ischemic Stroke - drug therapy ; Ischemic Stroke - metabolism ; Ischemic Stroke - pathology ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitochondrial Dynamics - drug effects ; Mitochondrial Dynamics - physiology ; Mitophagy - drug effects ; Mitophagy - physiology ; Neurobiology ; Neurology ; Neurosciences ; Nicorandil - administration & dosage ; Phagocytosis ; Quality control ; Reactive oxygen species ; Reperfusion ; Reperfusion Injury - drug therapy ; Reperfusion Injury - metabolism ; Reperfusion Injury - pathology ; Stroke ; Vasodilator Agents - administration & dosage</subject><ispartof>Molecular neurobiology, 2021-10, Vol.58 (10), p.5253-5271</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</citedby><cites>FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</cites><orcidid>0000-0001-6915-2860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-021-02494-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-021-02494-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34275087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Mimi</creatorcontrib><creatorcontrib>Gu, Xiaoping</creatorcontrib><creatorcontrib>Ma, Zhengliang</creatorcontrib><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</description><subject>Animals</subject><subject>Antioxidants - administration & dosage</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Brain Ischemia - drug therapy</subject><subject>Brain Ischemia - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Cell Biology</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Ischemic Stroke - drug therapy</subject><subject>Ischemic Stroke - metabolism</subject><subject>Ischemic Stroke - pathology</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitochondrial Dynamics - drug effects</subject><subject>Mitochondrial Dynamics - physiology</subject><subject>Mitophagy - drug effects</subject><subject>Mitophagy - physiology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nicorandil - administration & dosage</subject><subject>Phagocytosis</subject><subject>Quality control</subject><subject>Reactive oxygen species</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - metabolism</subject><subject>Reperfusion Injury - pathology</subject><subject>Stroke</subject><subject>Vasodilator Agents - administration & dosage</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMlKBDEQhoMoOi4v4EEavHhpTVJZjzK4DCii6DmkM2ntoaczJt2HufkOvqFPYnRcwIOHUJD66k_qQ2if4GOCsTxJhGLgJaYkH6ZZqdbQiHCuS0IUXUcjrDSUUjC1hbZTmmFMKcFyE20Bo5JjJUfo4rrpg3sK3TQ2ti1uB9s2_bIYh66PoS2arhj76KuYe5Pknvy8sW8vr3d-4WM9pCZ0xaSbDXG5izZq2ya_91V30MP52f34sry6uZiMT69KB5L35RSs8ApqxqaOcKcoQCXyjdW1E1YyW2OggtcEnGDcMSFF3sGC1lSQqgLYQUer3EUMz4NPvZk3yfm2tZ0PQzKUc6CgOP1AD_-gszDELv8uU1IrCULrTNEV5WJIKfraLGIzt3FpCDYfms1Ks8mazadmo_LQwVf0UM399Gfk22sGYAWk3Ooeffx9-5_Yd6zvh7I</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wu, Mimi</creator><creator>Gu, Xiaoping</creator><creator>Ma, Zhengliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6915-2860</orcidid></search><sort><creationdate>20211001</creationdate><title>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</title><author>Wu, Mimi ; Gu, Xiaoping ; Ma, Zhengliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d3a6e83f44dc15c8233b66e8a9fc6a74af03265f13c645c4676893a399261bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antioxidants - administration & dosage</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Brain Ischemia - drug therapy</topic><topic>Brain Ischemia - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Cell Biology</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Ischemic Stroke - drug therapy</topic><topic>Ischemic Stroke - metabolism</topic><topic>Ischemic Stroke - pathology</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitochondrial Dynamics - drug effects</topic><topic>Mitochondrial Dynamics - physiology</topic><topic>Mitophagy - drug effects</topic><topic>Mitophagy - physiology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nicorandil - administration & dosage</topic><topic>Phagocytosis</topic><topic>Quality control</topic><topic>Reactive oxygen species</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - metabolism</topic><topic>Reperfusion Injury - pathology</topic><topic>Stroke</topic><topic>Vasodilator Agents - administration & dosage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Mimi</creatorcontrib><creatorcontrib>Gu, Xiaoping</creatorcontrib><creatorcontrib>Ma, Zhengliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Mimi</au><au>Gu, Xiaoping</au><au>Ma, Zhengliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>58</volume><issue>10</issue><spage>5253</spage><epage>5271</epage><pages>5253-5271</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34275087</pmid><doi>10.1007/s12035-021-02494-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6915-2860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2021-10, Vol.58 (10), p.5253-5271 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_2553238523 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Antioxidants - administration & dosage Apoptosis Autophagy Biomedical and Life Sciences Biomedicine Blood flow Brain Ischemia - drug therapy Brain Ischemia - metabolism Brain Ischemia - pathology Cell Biology Humans Ischemia Ischemic Stroke - drug therapy Ischemic Stroke - metabolism Ischemic Stroke - pathology Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - pathology Mitochondrial Dynamics - drug effects Mitochondrial Dynamics - physiology Mitophagy - drug effects Mitophagy - physiology Neurobiology Neurology Neurosciences Nicorandil - administration & dosage Phagocytosis Quality control Reactive oxygen species Reperfusion Reperfusion Injury - drug therapy Reperfusion Injury - metabolism Reperfusion Injury - pathology Stroke Vasodilator Agents - administration & dosage |
title | Mitochondrial Quality Control in Cerebral Ischemia–Reperfusion Injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Quality%20Control%20in%20Cerebral%20Ischemia%E2%80%93Reperfusion%20Injury&rft.jtitle=Molecular%20neurobiology&rft.au=Wu,%20Mimi&rft.date=2021-10-01&rft.volume=58&rft.issue=10&rft.spage=5253&rft.epage=5271&rft.pages=5253-5271&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-021-02494-8&rft_dat=%3Cproquest_cross%3E2579873699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579873699&rft_id=info:pmid/34275087&rfr_iscdi=true |