Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires

Tin iodide phosphide (SnIP), an inorganic double‐helix material, is a quasi‐1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-08, Vol.33 (34), p.e2100978-n/a
Hauptverfasser: Purschke, David N., Pielmeier, Markus R. P., Üzer, Ebru, Ott, Claudia, Jensen, Charles, Degg, Annabelle, Vogel, Anna, Amer, Naaman, Nilges, Tom, Hegmann, Frank A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page e2100978
container_title Advanced materials (Weinheim)
container_volume 33
creator Purschke, David N.
Pielmeier, Markus R. P.
Üzer, Ebru
Ott, Claudia
Jensen, Charles
Degg, Annabelle
Vogel, Anna
Amer, Naaman
Nilges, Tom
Hegmann, Frank A.
description Tin iodide phosphide (SnIP), an inorganic double‐helix material, is a quasi‐1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time‐resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm2  V−1s−1 along the double‐helix axis and a hole mobility of 238 cm2  V−1 s−1 perpendicular to the double‐helix axis are detected. Additionally, infrared‐active (IR‐active) THz vibrational modes are measured, which shows excellent agreement with first‐principles calculations, and an ultrafast photoexcitation‐induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 1018 cm−3. The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications. The ultrafast optoelectronic properties of double‐helix tin iodide phosphide (SnIP) nanowires are explored using time‐resolved terahertz spectroscopy and quantum‐chemical calculations, providing deep insight into their photophysics, carrier dynamics, and anisotropic electronic structure. The carrier mobility is shown to be remarkably high for such a flexible and ultrasoft material, revealing the potential for future applications of SnIP in flexible electronics.
doi_str_mv 10.1002/adma.202100978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553235419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553235419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-c337b507b4d4064db888ecb295244e3b8df7e7de0bd15efe4c64f7c3166d57033</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgCtbL1nXAjZvWM7nMZVmsl4I3sLoNmeQMRqYTTWbUuvIRfEafxCkVBTducgh8_4HzE7KXwCgBYIfazvWIAes_RZavkUEiWTIUUMh1MoCCy2GRinyTbMX4AL1JIR0QdVu3QVc6tvT63rfe-MZ2pnXPrl1Q3Vg6w6DvMbRv9M6VQbfON7qmk0Wj585E6ho68V1Z4-f7xxnW7pXeNNNreqkb_-ICxh2yUek64u733Ca3J8ezo7Ph-dXp9Gh8PjRcQt6_PCslZKWwAlJhyzzP0ZSskEwI5GVuqwwzi1DaRGKFwqSiygxP0tTKDDjfJgervY_BP3UYWzV30WBd6wZ9FxWTkjMuRVL0dP8PffBd6K9aqlQA5BxYr0YrZYKPMWClHoOb67BQCahl32rZt_rpuw8Uq8CLq3Hxj1bjycX4N_sFMdiFkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564008302</pqid></control><display><type>article</type><title>Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Purschke, David N. ; Pielmeier, Markus R. P. ; Üzer, Ebru ; Ott, Claudia ; Jensen, Charles ; Degg, Annabelle ; Vogel, Anna ; Amer, Naaman ; Nilges, Tom ; Hegmann, Frank A.</creator><creatorcontrib>Purschke, David N. ; Pielmeier, Markus R. P. ; Üzer, Ebru ; Ott, Claudia ; Jensen, Charles ; Degg, Annabelle ; Vogel, Anna ; Amer, Naaman ; Nilges, Tom ; Hegmann, Frank A.</creatorcontrib><description>Tin iodide phosphide (SnIP), an inorganic double‐helix material, is a quasi‐1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time‐resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm2  V−1s−1 along the double‐helix axis and a hole mobility of 238 cm2  V−1 s−1 perpendicular to the double‐helix axis are detected. Additionally, infrared‐active (IR‐active) THz vibrational modes are measured, which shows excellent agreement with first‐principles calculations, and an ultrafast photoexcitation‐induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 1018 cm−3. The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications. The ultrafast optoelectronic properties of double‐helix tin iodide phosphide (SnIP) nanowires are explored using time‐resolved terahertz spectroscopy and quantum‐chemical calculations, providing deep insight into their photophysics, carrier dynamics, and anisotropic electronic structure. The carrier mobility is shown to be remarkably high for such a flexible and ultrasoft material, revealing the potential for future applications of SnIP in flexible electronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202100978</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier lifetime ; Carrier mobility ; Charge transport ; double‐helix nanowires ; Electron mobility ; Electronic structure ; Electronics ; Flexible components ; Hole mobility ; inorganic semiconductors ; Materials science ; Mathematical analysis ; Nanowires ; Phosphides ; photoconductivity ; Photoexcitation ; photophysics ; Quantum chemistry ; terahertz vibrational dynamics ; Transient photoconductivity ; ultrafast processes ; van der Waals materials</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (34), p.e2100978-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-c337b507b4d4064db888ecb295244e3b8df7e7de0bd15efe4c64f7c3166d57033</citedby><cites>FETCH-LOGICAL-c3508-c337b507b4d4064db888ecb295244e3b8df7e7de0bd15efe4c64f7c3166d57033</cites><orcidid>0000-0002-1303-4782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202100978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202100978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Purschke, David N.</creatorcontrib><creatorcontrib>Pielmeier, Markus R. P.</creatorcontrib><creatorcontrib>Üzer, Ebru</creatorcontrib><creatorcontrib>Ott, Claudia</creatorcontrib><creatorcontrib>Jensen, Charles</creatorcontrib><creatorcontrib>Degg, Annabelle</creatorcontrib><creatorcontrib>Vogel, Anna</creatorcontrib><creatorcontrib>Amer, Naaman</creatorcontrib><creatorcontrib>Nilges, Tom</creatorcontrib><creatorcontrib>Hegmann, Frank A.</creatorcontrib><title>Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires</title><title>Advanced materials (Weinheim)</title><description>Tin iodide phosphide (SnIP), an inorganic double‐helix material, is a quasi‐1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time‐resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm2  V−1s−1 along the double‐helix axis and a hole mobility of 238 cm2  V−1 s−1 perpendicular to the double‐helix axis are detected. Additionally, infrared‐active (IR‐active) THz vibrational modes are measured, which shows excellent agreement with first‐principles calculations, and an ultrafast photoexcitation‐induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 1018 cm−3. The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications. The ultrafast optoelectronic properties of double‐helix tin iodide phosphide (SnIP) nanowires are explored using time‐resolved terahertz spectroscopy and quantum‐chemical calculations, providing deep insight into their photophysics, carrier dynamics, and anisotropic electronic structure. The carrier mobility is shown to be remarkably high for such a flexible and ultrasoft material, revealing the potential for future applications of SnIP in flexible electronics.</description><subject>Carrier lifetime</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>double‐helix nanowires</subject><subject>Electron mobility</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Flexible components</subject><subject>Hole mobility</subject><subject>inorganic semiconductors</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Nanowires</subject><subject>Phosphides</subject><subject>photoconductivity</subject><subject>Photoexcitation</subject><subject>photophysics</subject><subject>Quantum chemistry</subject><subject>terahertz vibrational dynamics</subject><subject>Transient photoconductivity</subject><subject>ultrafast processes</subject><subject>van der Waals materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKAzEUBuAgCtbL1nXAjZvWM7nMZVmsl4I3sLoNmeQMRqYTTWbUuvIRfEafxCkVBTducgh8_4HzE7KXwCgBYIfazvWIAes_RZavkUEiWTIUUMh1MoCCy2GRinyTbMX4AL1JIR0QdVu3QVc6tvT63rfe-MZ2pnXPrl1Q3Vg6w6DvMbRv9M6VQbfON7qmk0Wj585E6ho68V1Z4-f7xxnW7pXeNNNreqkb_-ICxh2yUek64u733Ca3J8ezo7Ph-dXp9Gh8PjRcQt6_PCslZKWwAlJhyzzP0ZSskEwI5GVuqwwzi1DaRGKFwqSiygxP0tTKDDjfJgervY_BP3UYWzV30WBd6wZ9FxWTkjMuRVL0dP8PffBd6K9aqlQA5BxYr0YrZYKPMWClHoOb67BQCahl32rZt_rpuw8Uq8CLq3Hxj1bjycX4N_sFMdiFkA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Purschke, David N.</creator><creator>Pielmeier, Markus R. P.</creator><creator>Üzer, Ebru</creator><creator>Ott, Claudia</creator><creator>Jensen, Charles</creator><creator>Degg, Annabelle</creator><creator>Vogel, Anna</creator><creator>Amer, Naaman</creator><creator>Nilges, Tom</creator><creator>Hegmann, Frank A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1303-4782</orcidid></search><sort><creationdate>20210801</creationdate><title>Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires</title><author>Purschke, David N. ; Pielmeier, Markus R. P. ; Üzer, Ebru ; Ott, Claudia ; Jensen, Charles ; Degg, Annabelle ; Vogel, Anna ; Amer, Naaman ; Nilges, Tom ; Hegmann, Frank A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-c337b507b4d4064db888ecb295244e3b8df7e7de0bd15efe4c64f7c3166d57033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier lifetime</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>double‐helix nanowires</topic><topic>Electron mobility</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Flexible components</topic><topic>Hole mobility</topic><topic>inorganic semiconductors</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Nanowires</topic><topic>Phosphides</topic><topic>photoconductivity</topic><topic>Photoexcitation</topic><topic>photophysics</topic><topic>Quantum chemistry</topic><topic>terahertz vibrational dynamics</topic><topic>Transient photoconductivity</topic><topic>ultrafast processes</topic><topic>van der Waals materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purschke, David N.</creatorcontrib><creatorcontrib>Pielmeier, Markus R. P.</creatorcontrib><creatorcontrib>Üzer, Ebru</creatorcontrib><creatorcontrib>Ott, Claudia</creatorcontrib><creatorcontrib>Jensen, Charles</creatorcontrib><creatorcontrib>Degg, Annabelle</creatorcontrib><creatorcontrib>Vogel, Anna</creatorcontrib><creatorcontrib>Amer, Naaman</creatorcontrib><creatorcontrib>Nilges, Tom</creatorcontrib><creatorcontrib>Hegmann, Frank A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purschke, David N.</au><au>Pielmeier, Markus R. P.</au><au>Üzer, Ebru</au><au>Ott, Claudia</au><au>Jensen, Charles</au><au>Degg, Annabelle</au><au>Vogel, Anna</au><au>Amer, Naaman</au><au>Nilges, Tom</au><au>Hegmann, Frank A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>34</issue><spage>e2100978</spage><epage>n/a</epage><pages>e2100978-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Tin iodide phosphide (SnIP), an inorganic double‐helix material, is a quasi‐1D van der Waals semiconductor that shows promise in photocatalysis and flexible electronics. However, the understanding of the fundamental photophysics and charge transport dynamics of this new material is limited. Here, time‐resolved terahertz (THz) spectroscopy is used to probe the transient photoconductivity of SnIP nanowire films and measure the carrier mobility. With insight into the highly anisotropic electronic structure from quantum chemical calculations, an electron mobility as high as 280 cm2  V−1s−1 along the double‐helix axis and a hole mobility of 238 cm2  V−1 s−1 perpendicular to the double‐helix axis are detected. Additionally, infrared‐active (IR‐active) THz vibrational modes are measured, which shows excellent agreement with first‐principles calculations, and an ultrafast photoexcitation‐induced charge redistribution is observed that reduces the amplitude of a twisting mode of the outer SnI helix on picosecond timescales. Finally, it is shown that the carrier lifetime and mobility are limited by a trap density greater than 1018 cm−3. The results provide insight into the optical excitation and relaxation pathways of SnIP and demonstrate a remarkably high carrier mobility for such a soft and flexible material, suggesting that it could be ideally suited for flexible electronics applications. The ultrafast optoelectronic properties of double‐helix tin iodide phosphide (SnIP) nanowires are explored using time‐resolved terahertz spectroscopy and quantum‐chemical calculations, providing deep insight into their photophysics, carrier dynamics, and anisotropic electronic structure. The carrier mobility is shown to be remarkably high for such a flexible and ultrasoft material, revealing the potential for future applications of SnIP in flexible electronics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202100978</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1303-4782</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-08, Vol.33 (34), p.e2100978-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2553235419
source Wiley Online Library Journals Frontfile Complete
subjects Carrier lifetime
Carrier mobility
Charge transport
double‐helix nanowires
Electron mobility
Electronic structure
Electronics
Flexible components
Hole mobility
inorganic semiconductors
Materials science
Mathematical analysis
Nanowires
Phosphides
photoconductivity
Photoexcitation
photophysics
Quantum chemistry
terahertz vibrational dynamics
Transient photoconductivity
ultrafast processes
van der Waals materials
title Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Photoconductivity%20and%20Terahertz%20Vibrational%20Dynamics%20in%20Double%E2%80%90Helix%20SnIP%20Nanowires&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Purschke,%20David%20N.&rft.date=2021-08-01&rft.volume=33&rft.issue=34&rft.spage=e2100978&rft.epage=n/a&rft.pages=e2100978-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202100978&rft_dat=%3Cproquest_cross%3E2553235419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564008302&rft_id=info:pmid/&rfr_iscdi=true