Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses

The monitoring and assessment of a river system is a complex process and not restricted to urban areas only. The discharge of wastewater drains in the river increases the river system complexity further. The abstraction of freshwater at regular intervals and the discharge of the wastewater from vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2021-08, Vol.193 (8), p.494-494, Article 494
Hauptverfasser: Arora, Sameer, Keshari, Ashok K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 8
container_start_page 494
container_title Environmental monitoring and assessment
container_volume 193
creator Arora, Sameer
Keshari, Ashok K.
description The monitoring and assessment of a river system is a complex process and not restricted to urban areas only. The discharge of wastewater drains in the river increases the river system complexity further. The abstraction of freshwater at regular intervals and the discharge of the wastewater from various sources cause significant spatial and temporal variation in water quality. The multivariate statistical analysis is performed to identify water quality parameters’ variability on the 5-year dataset from four monitoring sites. Hierarchical agglomerative cluster analysis (HACA) and principal component analysis (PCA) are applied to characterize the water quality parameters and identify the significant pollution sources. The clusters are formed considering the similarities between parameters, and eigenvalues are determined from the covariance of parameters. The box plots are designed to identify the spatial and temporal variations. The highest variability of the first principal component is 60.78% of the total variance at the second sampling location, the ITO bridge. The significant varifactors obtained from the PCA indicate the parameters responsible for the maximum variation in water quality. The study reveals the importance of multivariate statistical techniques in identifying a pattern of variability of parameters and developing management strategies to improve river water quality by identifying dominant parameters causing the maximum degradation in water quality.
doi_str_mv 10.1007/s10661-021-09318-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553233662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553125213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-2b49dd0f88fb5e7feb460e2f68bdcefd922e246a697bb4cd7c1ff4b524d1373b3</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhUVoITdpXyArQTbpwql-bPlqGULSBgItpV10JcbyyFGwpRvJTrlP0Veubh0oZNHFIDh85zCjQ8gZZ5ecsfZj5kwpXjFRRku-rfgR2fCmlZXQjX5DNoyrtlJS6WNykvMjY0y3td6Q319hnjEFmtDGIfjZx0Cjo7-gqPRpgdHPe_oMyUOwSH2gP2FaAtBv_rkAF3eh9_CBLtmHgT54TJDsg7cwUhiGMU5FmAtJ7bjkQyKEnu6SD9bvCmPjtIsBw1x0GPcZ8zvy1sGY8f3Le0p-3N58v_5c3X_5dHd9dV9Z2Yi5El2t-5657dZ1DbYOu1oxFE5tu96i67UQKGoFSrddV9u-tdy5umtE3XPZyk6ekos1d5fi04J5NpPPFscRAsYlG9E0UkiplCjo-Sv0MS6p7LtSXDSCy0KJlbIp5pzQmXLmBGlvODOHjszakSkdmb8dGV5McjXlw58MmP5F_8f1BxMCmAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553125213</pqid></control><display><type>article</type><title>Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses</title><source>Springer Nature - Complete Springer Journals</source><creator>Arora, Sameer ; Keshari, Ashok K.</creator><creatorcontrib>Arora, Sameer ; Keshari, Ashok K.</creatorcontrib><description>The monitoring and assessment of a river system is a complex process and not restricted to urban areas only. The discharge of wastewater drains in the river increases the river system complexity further. The abstraction of freshwater at regular intervals and the discharge of the wastewater from various sources cause significant spatial and temporal variation in water quality. The multivariate statistical analysis is performed to identify water quality parameters’ variability on the 5-year dataset from four monitoring sites. Hierarchical agglomerative cluster analysis (HACA) and principal component analysis (PCA) are applied to characterize the water quality parameters and identify the significant pollution sources. The clusters are formed considering the similarities between parameters, and eigenvalues are determined from the covariance of parameters. The box plots are designed to identify the spatial and temporal variations. The highest variability of the first principal component is 60.78% of the total variance at the second sampling location, the ITO bridge. The significant varifactors obtained from the PCA indicate the parameters responsible for the maximum variation in water quality. The study reveals the importance of multivariate statistical techniques in identifying a pattern of variability of parameters and developing management strategies to improve river water quality by identifying dominant parameters causing the maximum degradation in water quality.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-021-09318-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Bridges ; Cluster analysis ; Complexity ; Discharge ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Eigenvalues ; Environment ; Environmental Management ; Environmental monitoring ; Environmental science ; Freshwater ; Inland water environment ; Monitoring/Environmental Analysis ; Multivariate analysis ; Multivariate statistical analysis ; Parameter identification ; Parameters ; Pattern recognition ; Pollution sources ; Principal components analysis ; River water ; River water quality ; Rivers ; Statistical analysis ; Statistical methods ; Temporal variations ; Urban areas ; Variability ; Variance ; Wastewater ; Wastewater discharges ; Water quality</subject><ispartof>Environmental monitoring and assessment, 2021-08, Vol.193 (8), p.494-494, Article 494</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-2b49dd0f88fb5e7feb460e2f68bdcefd922e246a697bb4cd7c1ff4b524d1373b3</citedby><cites>FETCH-LOGICAL-c352t-2b49dd0f88fb5e7feb460e2f68bdcefd922e246a697bb4cd7c1ff4b524d1373b3</cites><orcidid>0000-0003-4942-8510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-021-09318-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-021-09318-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Arora, Sameer</creatorcontrib><creatorcontrib>Keshari, Ashok K.</creatorcontrib><title>Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><description>The monitoring and assessment of a river system is a complex process and not restricted to urban areas only. The discharge of wastewater drains in the river increases the river system complexity further. The abstraction of freshwater at regular intervals and the discharge of the wastewater from various sources cause significant spatial and temporal variation in water quality. The multivariate statistical analysis is performed to identify water quality parameters’ variability on the 5-year dataset from four monitoring sites. Hierarchical agglomerative cluster analysis (HACA) and principal component analysis (PCA) are applied to characterize the water quality parameters and identify the significant pollution sources. The clusters are formed considering the similarities between parameters, and eigenvalues are determined from the covariance of parameters. The box plots are designed to identify the spatial and temporal variations. The highest variability of the first principal component is 60.78% of the total variance at the second sampling location, the ITO bridge. The significant varifactors obtained from the PCA indicate the parameters responsible for the maximum variation in water quality. The study reveals the importance of multivariate statistical techniques in identifying a pattern of variability of parameters and developing management strategies to improve river water quality by identifying dominant parameters causing the maximum degradation in water quality.</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bridges</subject><subject>Cluster analysis</subject><subject>Complexity</subject><subject>Discharge</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Eigenvalues</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental monitoring</subject><subject>Environmental science</subject><subject>Freshwater</subject><subject>Inland water environment</subject><subject>Monitoring/Environmental Analysis</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Pattern recognition</subject><subject>Pollution sources</subject><subject>Principal components analysis</subject><subject>River water</subject><subject>River water quality</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Temporal variations</subject><subject>Urban areas</subject><subject>Variability</subject><subject>Variance</subject><subject>Wastewater</subject><subject>Wastewater discharges</subject><subject>Water quality</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3TAQhUVoITdpXyArQTbpwql-bPlqGULSBgItpV10JcbyyFGwpRvJTrlP0Veubh0oZNHFIDh85zCjQ8gZZ5ecsfZj5kwpXjFRRku-rfgR2fCmlZXQjX5DNoyrtlJS6WNykvMjY0y3td6Q319hnjEFmtDGIfjZx0Cjo7-gqPRpgdHPe_oMyUOwSH2gP2FaAtBv_rkAF3eh9_CBLtmHgT54TJDsg7cwUhiGMU5FmAtJ7bjkQyKEnu6SD9bvCmPjtIsBw1x0GPcZ8zvy1sGY8f3Le0p-3N58v_5c3X_5dHd9dV9Z2Yi5El2t-5657dZ1DbYOu1oxFE5tu96i67UQKGoFSrddV9u-tdy5umtE3XPZyk6ekos1d5fi04J5NpPPFscRAsYlG9E0UkiplCjo-Sv0MS6p7LtSXDSCy0KJlbIp5pzQmXLmBGlvODOHjszakSkdmb8dGV5McjXlw58MmP5F_8f1BxMCmAk</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Arora, Sameer</creator><creator>Keshari, Ashok K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4942-8510</orcidid></search><sort><creationdate>20210801</creationdate><title>Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses</title><author>Arora, Sameer ; Keshari, Ashok K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-2b49dd0f88fb5e7feb460e2f68bdcefd922e246a697bb4cd7c1ff4b524d1373b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bridges</topic><topic>Cluster analysis</topic><topic>Complexity</topic><topic>Discharge</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Eigenvalues</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental monitoring</topic><topic>Environmental science</topic><topic>Freshwater</topic><topic>Inland water environment</topic><topic>Monitoring/Environmental Analysis</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Pattern recognition</topic><topic>Pollution sources</topic><topic>Principal components analysis</topic><topic>River water</topic><topic>River water quality</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Temporal variations</topic><topic>Urban areas</topic><topic>Variability</topic><topic>Variance</topic><topic>Wastewater</topic><topic>Wastewater discharges</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arora, Sameer</creatorcontrib><creatorcontrib>Keshari, Ashok K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Sameer</au><au>Keshari, Ashok K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>193</volume><issue>8</issue><spage>494</spage><epage>494</epage><pages>494-494</pages><artnum>494</artnum><issn>0167-6369</issn><eissn>1573-2959</eissn><abstract>The monitoring and assessment of a river system is a complex process and not restricted to urban areas only. The discharge of wastewater drains in the river increases the river system complexity further. The abstraction of freshwater at regular intervals and the discharge of the wastewater from various sources cause significant spatial and temporal variation in water quality. The multivariate statistical analysis is performed to identify water quality parameters’ variability on the 5-year dataset from four monitoring sites. Hierarchical agglomerative cluster analysis (HACA) and principal component analysis (PCA) are applied to characterize the water quality parameters and identify the significant pollution sources. The clusters are formed considering the similarities between parameters, and eigenvalues are determined from the covariance of parameters. The box plots are designed to identify the spatial and temporal variations. The highest variability of the first principal component is 60.78% of the total variance at the second sampling location, the ITO bridge. The significant varifactors obtained from the PCA indicate the parameters responsible for the maximum variation in water quality. The study reveals the importance of multivariate statistical techniques in identifying a pattern of variability of parameters and developing management strategies to improve river water quality by identifying dominant parameters causing the maximum degradation in water quality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10661-021-09318-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4942-8510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6369
ispartof Environmental monitoring and assessment, 2021-08, Vol.193 (8), p.494-494, Article 494
issn 0167-6369
1573-2959
language eng
recordid cdi_proquest_miscellaneous_2553233662
source Springer Nature - Complete Springer Journals
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Bridges
Cluster analysis
Complexity
Discharge
Earth and Environmental Science
Ecology
Ecotoxicology
Eigenvalues
Environment
Environmental Management
Environmental monitoring
Environmental science
Freshwater
Inland water environment
Monitoring/Environmental Analysis
Multivariate analysis
Multivariate statistical analysis
Parameter identification
Parameters
Pattern recognition
Pollution sources
Principal components analysis
River water
River water quality
Rivers
Statistical analysis
Statistical methods
Temporal variations
Urban areas
Variability
Variance
Wastewater
Wastewater discharges
Water quality
title Pattern recognition of water quality variance in Yamuna River (India) using hierarchical agglomerative cluster and principal component analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20of%20water%20quality%20variance%20in%20Yamuna%20River%20(India)%20using%20hierarchical%20agglomerative%20cluster%20and%20principal%20component%20analyses&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Arora,%20Sameer&rft.date=2021-08-01&rft.volume=193&rft.issue=8&rft.spage=494&rft.epage=494&rft.pages=494-494&rft.artnum=494&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-021-09318-1&rft_dat=%3Cproquest_cross%3E2553125213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553125213&rft_id=info:pmid/&rfr_iscdi=true