Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults
The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings. In this cross-sectional study, we pooled individual-level data...
Gespeichert in:
Veröffentlicht in: | The Lancet (British edition) 2021-07, Vol.398 (10296), p.238-248 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 10296 |
container_start_page | 238 |
container_title | The Lancet (British edition) |
container_volume | 398 |
creator | Teufel, Felix Seiglie, Jacqueline A Geldsetzer, Pascal Theilmann, Michaela Marcus, Maja E Ebert, Cara Arboleda, William Andres Lopez Agoudavi, Kokou Andall-Brereton, Glennis Aryal, Krishna K Bicaba, Brice Wilfried Brian, Garry Bovet, Pascal Dorobantu, Maria Gurung, Mongal Singh Guwatudde, David Houehanou, Corine Houinato, Dismand Jorgensen, Jutta M Adelin Kagaruki, Gibson B Karki, Khem B Labadarios, Demetre Martins, Joao S Mayige, Mary T McClure, Roy Wong Mwangi, Joseph Kibachio Mwalim, Omar Norov, Bolormaa Crooks, Sarah Farzadfar, Farshad Moghaddam, Sahar Saeedi Silver, Bahendeka K Sturua, Lela Wesseh, Chea Stanford Stokes, Andrew C Essien, Utibe R De Neve, Jan-Walter Atun, Rifat Davies, Justine I Vollmer, Sebastian Bärnighausen, Till W Ali, Mohammed K Meigs, James B Wexler, Deborah J Manne-Goehler, Jennifer |
description | The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings.
In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA1c]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA1c of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5–22·9 kg/m2], upper-normal [23·0–24·9 kg/m2], overweight [25·0–29·9 kg/m2], or obese [≥30·0 kg/m2]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region.
Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6–27·8), of obesity was 21·0% (19·6–22·5), and of diabetes was 9·3% (8·4–10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m2 or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5–22·9 kg/m2. Diabetes risk also increased steeply in individuals age |
doi_str_mv | 10.1016/S0140-6736(21)00844-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2553233540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668655162</galeid><els_id>S0140673621008448</els_id><sourcerecordid>A668655162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-be22ba82677a955ee57c044897df59d554290bd1a62485f8d34c2ae7c4ba35ab3</originalsourceid><addsrcrecordid>eNqFkcuKFDEUhgtRnHH0EZSAICNYmqRyqXYj4-ANBlyo4C6cSk4PGVOVNkm10zuXvo3v5JOY7p6ZhRtXgZ_v5CT_1zQPGX3OKFMvPlEmaKt0p445e0ppL0Tb32oOmdCilUJ_vd0c3iAHzb2cLyilQlF5tznoBNeCKnnY_H4d3aYdIWfiJ4eXBCZHnIcBC2aSfP5WcyI1CfFH6ycbR9who3cu4HVi4zyV5DG_JEBsijm3GW3xcYJAcpndhsQlmWCfhA1JuEqYcSo1WuOz7W6_9m6G0AZcYyAOCmw3q17--flLMUXAzaHk-82dJYSMD67Oo-bL2zefT9-3Zx_ffTg9OWut7HRpB-R8gJ4rrWEhJaLUlgrRL7RbyoWTUvAFHRwDxUUvl73rhOWA2ooBOglDd9Qc7-9dpfh9xlzM6LPFEGDCOGfDpex410lBK_r4H_Qizqn-c0fxKktTVqkne-ocApptb1PBy3IOc87GnCjVKymZ4hWUe3DXY8KlWSU_QtoYRs1WvdmpN1uvhjOzU2_6Ovfo6hnzMKK7mbp2XYFXewBrb2uPyWTrcbLofKqyjIv-Pyv-AmOBvxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552016701</pqid></control><display><type>article</type><title>Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Teufel, Felix ; Seiglie, Jacqueline A ; Geldsetzer, Pascal ; Theilmann, Michaela ; Marcus, Maja E ; Ebert, Cara ; Arboleda, William Andres Lopez ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Brian, Garry ; Bovet, Pascal ; Dorobantu, Maria ; Gurung, Mongal Singh ; Guwatudde, David ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta M Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwangi, Joseph Kibachio ; Mwalim, Omar ; Norov, Bolormaa ; Crooks, Sarah ; Farzadfar, Farshad ; Moghaddam, Sahar Saeedi ; Silver, Bahendeka K ; Sturua, Lela ; Wesseh, Chea Stanford ; Stokes, Andrew C ; Essien, Utibe R ; De Neve, Jan-Walter ; Atun, Rifat ; Davies, Justine I ; Vollmer, Sebastian ; Bärnighausen, Till W ; Ali, Mohammed K ; Meigs, James B ; Wexler, Deborah J ; Manne-Goehler, Jennifer</creator><creatorcontrib>Teufel, Felix ; Seiglie, Jacqueline A ; Geldsetzer, Pascal ; Theilmann, Michaela ; Marcus, Maja E ; Ebert, Cara ; Arboleda, William Andres Lopez ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Brian, Garry ; Bovet, Pascal ; Dorobantu, Maria ; Gurung, Mongal Singh ; Guwatudde, David ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta M Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwangi, Joseph Kibachio ; Mwalim, Omar ; Norov, Bolormaa ; Crooks, Sarah ; Farzadfar, Farshad ; Moghaddam, Sahar Saeedi ; Silver, Bahendeka K ; Sturua, Lela ; Wesseh, Chea Stanford ; Stokes, Andrew C ; Essien, Utibe R ; De Neve, Jan-Walter ; Atun, Rifat ; Davies, Justine I ; Vollmer, Sebastian ; Bärnighausen, Till W ; Ali, Mohammed K ; Meigs, James B ; Wexler, Deborah J ; Manne-Goehler, Jennifer</creatorcontrib><description>The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings.
In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA1c]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA1c of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5–22·9 kg/m2], upper-normal [23·0–24·9 kg/m2], overweight [25·0–29·9 kg/m2], or obese [≥30·0 kg/m2]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region.
Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6–27·8), of obesity was 21·0% (19·6–22·5), and of diabetes was 9·3% (8·4–10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m2 or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5–22·9 kg/m2. Diabetes risk also increased steeply in individuals aged 35–44 years and in men aged 25–34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m2 among men in east, south, and southeast Asia to 28·3 kg/m2 among women in the Middle East and north Africa and in Latin America and the Caribbean.
The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines.
Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program.</description><identifier>ISSN: 0140-6736</identifier><identifier>EISSN: 1474-547X</identifier><identifier>DOI: 10.1016/S0140-6736(21)00844-8</identifier><identifier>PMID: 34274065</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Biomarkers ; Body Mass Index ; Body weight ; Cross-Sectional Studies ; Datasets ; Developing Countries - statistics & numerical data ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - epidemiology ; Empirical analysis ; Fasting ; Female ; Global Health ; Glucose ; Glycated Hemoglobin - analysis ; Health risks ; Health Surveys ; Hemoglobin ; Humans ; Income ; Infectious diseases ; Low income groups ; Male ; Men ; Metabolism ; Middle Aged ; Obesity ; Obesity - epidemiology ; Overweight ; Plasma ; Polls & surveys ; Population ; Poverty ; Prevalence ; Public health ; Screening ; Sex ; Thresholds ; Trends ; Women</subject><ispartof>The Lancet (British edition), 2021-07, Vol.398 (10296), p.238-248</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>COPYRIGHT 2021 Elsevier B.V.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-be22ba82677a955ee57c044897df59d554290bd1a62485f8d34c2ae7c4ba35ab3</citedby><cites>FETCH-LOGICAL-c537t-be22ba82677a955ee57c044897df59d554290bd1a62485f8d34c2ae7c4ba35ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2552016701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,64361,64363,64365,65309,72215</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34274065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teufel, Felix</creatorcontrib><creatorcontrib>Seiglie, Jacqueline A</creatorcontrib><creatorcontrib>Geldsetzer, Pascal</creatorcontrib><creatorcontrib>Theilmann, Michaela</creatorcontrib><creatorcontrib>Marcus, Maja E</creatorcontrib><creatorcontrib>Ebert, Cara</creatorcontrib><creatorcontrib>Arboleda, William Andres Lopez</creatorcontrib><creatorcontrib>Agoudavi, Kokou</creatorcontrib><creatorcontrib>Andall-Brereton, Glennis</creatorcontrib><creatorcontrib>Aryal, Krishna K</creatorcontrib><creatorcontrib>Bicaba, Brice Wilfried</creatorcontrib><creatorcontrib>Brian, Garry</creatorcontrib><creatorcontrib>Bovet, Pascal</creatorcontrib><creatorcontrib>Dorobantu, Maria</creatorcontrib><creatorcontrib>Gurung, Mongal Singh</creatorcontrib><creatorcontrib>Guwatudde, David</creatorcontrib><creatorcontrib>Houehanou, Corine</creatorcontrib><creatorcontrib>Houinato, Dismand</creatorcontrib><creatorcontrib>Jorgensen, Jutta M Adelin</creatorcontrib><creatorcontrib>Kagaruki, Gibson B</creatorcontrib><creatorcontrib>Karki, Khem B</creatorcontrib><creatorcontrib>Labadarios, Demetre</creatorcontrib><creatorcontrib>Martins, Joao S</creatorcontrib><creatorcontrib>Mayige, Mary T</creatorcontrib><creatorcontrib>McClure, Roy Wong</creatorcontrib><creatorcontrib>Mwangi, Joseph Kibachio</creatorcontrib><creatorcontrib>Mwalim, Omar</creatorcontrib><creatorcontrib>Norov, Bolormaa</creatorcontrib><creatorcontrib>Crooks, Sarah</creatorcontrib><creatorcontrib>Farzadfar, Farshad</creatorcontrib><creatorcontrib>Moghaddam, Sahar Saeedi</creatorcontrib><creatorcontrib>Silver, Bahendeka K</creatorcontrib><creatorcontrib>Sturua, Lela</creatorcontrib><creatorcontrib>Wesseh, Chea Stanford</creatorcontrib><creatorcontrib>Stokes, Andrew C</creatorcontrib><creatorcontrib>Essien, Utibe R</creatorcontrib><creatorcontrib>De Neve, Jan-Walter</creatorcontrib><creatorcontrib>Atun, Rifat</creatorcontrib><creatorcontrib>Davies, Justine I</creatorcontrib><creatorcontrib>Vollmer, Sebastian</creatorcontrib><creatorcontrib>Bärnighausen, Till W</creatorcontrib><creatorcontrib>Ali, Mohammed K</creatorcontrib><creatorcontrib>Meigs, James B</creatorcontrib><creatorcontrib>Wexler, Deborah J</creatorcontrib><creatorcontrib>Manne-Goehler, Jennifer</creatorcontrib><title>Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults</title><title>The Lancet (British edition)</title><addtitle>Lancet</addtitle><description>The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings.
In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA1c]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA1c of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5–22·9 kg/m2], upper-normal [23·0–24·9 kg/m2], overweight [25·0–29·9 kg/m2], or obese [≥30·0 kg/m2]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region.
Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6–27·8), of obesity was 21·0% (19·6–22·5), and of diabetes was 9·3% (8·4–10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m2 or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5–22·9 kg/m2. Diabetes risk also increased steeply in individuals aged 35–44 years and in men aged 25–34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m2 among men in east, south, and southeast Asia to 28·3 kg/m2 among women in the Middle East and north Africa and in Latin America and the Caribbean.
The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines.
Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program.</description><subject>Adult</subject><subject>Biomarkers</subject><subject>Body Mass Index</subject><subject>Body weight</subject><subject>Cross-Sectional Studies</subject><subject>Datasets</subject><subject>Developing Countries - statistics & numerical data</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Empirical analysis</subject><subject>Fasting</subject><subject>Female</subject><subject>Global Health</subject><subject>Glucose</subject><subject>Glycated Hemoglobin - analysis</subject><subject>Health risks</subject><subject>Health Surveys</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Income</subject><subject>Infectious diseases</subject><subject>Low income groups</subject><subject>Male</subject><subject>Men</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>Overweight</subject><subject>Plasma</subject><subject>Polls & surveys</subject><subject>Population</subject><subject>Poverty</subject><subject>Prevalence</subject><subject>Public health</subject><subject>Screening</subject><subject>Sex</subject><subject>Thresholds</subject><subject>Trends</subject><subject>Women</subject><issn>0140-6736</issn><issn>1474-547X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcuKFDEUhgtRnHH0EZSAICNYmqRyqXYj4-ANBlyo4C6cSk4PGVOVNkm10zuXvo3v5JOY7p6ZhRtXgZ_v5CT_1zQPGX3OKFMvPlEmaKt0p445e0ppL0Tb32oOmdCilUJ_vd0c3iAHzb2cLyilQlF5tznoBNeCKnnY_H4d3aYdIWfiJ4eXBCZHnIcBC2aSfP5WcyI1CfFH6ycbR9who3cu4HVi4zyV5DG_JEBsijm3GW3xcYJAcpndhsQlmWCfhA1JuEqYcSo1WuOz7W6_9m6G0AZcYyAOCmw3q17--flLMUXAzaHk-82dJYSMD67Oo-bL2zefT9-3Zx_ffTg9OWut7HRpB-R8gJ4rrWEhJaLUlgrRL7RbyoWTUvAFHRwDxUUvl73rhOWA2ooBOglDd9Qc7-9dpfh9xlzM6LPFEGDCOGfDpex410lBK_r4H_Qizqn-c0fxKktTVqkne-ocApptb1PBy3IOc87GnCjVKymZ4hWUe3DXY8KlWSU_QtoYRs1WvdmpN1uvhjOzU2_6Ovfo6hnzMKK7mbp2XYFXewBrb2uPyWTrcbLofKqyjIv-Pyv-AmOBvxk</recordid><startdate>20210717</startdate><enddate>20210717</enddate><creator>Teufel, Felix</creator><creator>Seiglie, Jacqueline A</creator><creator>Geldsetzer, Pascal</creator><creator>Theilmann, Michaela</creator><creator>Marcus, Maja E</creator><creator>Ebert, Cara</creator><creator>Arboleda, William Andres Lopez</creator><creator>Agoudavi, Kokou</creator><creator>Andall-Brereton, Glennis</creator><creator>Aryal, Krishna K</creator><creator>Bicaba, Brice Wilfried</creator><creator>Brian, Garry</creator><creator>Bovet, Pascal</creator><creator>Dorobantu, Maria</creator><creator>Gurung, Mongal Singh</creator><creator>Guwatudde, David</creator><creator>Houehanou, Corine</creator><creator>Houinato, Dismand</creator><creator>Jorgensen, Jutta M Adelin</creator><creator>Kagaruki, Gibson B</creator><creator>Karki, Khem B</creator><creator>Labadarios, Demetre</creator><creator>Martins, Joao S</creator><creator>Mayige, Mary T</creator><creator>McClure, Roy Wong</creator><creator>Mwangi, Joseph Kibachio</creator><creator>Mwalim, Omar</creator><creator>Norov, Bolormaa</creator><creator>Crooks, Sarah</creator><creator>Farzadfar, Farshad</creator><creator>Moghaddam, Sahar Saeedi</creator><creator>Silver, Bahendeka K</creator><creator>Sturua, Lela</creator><creator>Wesseh, Chea Stanford</creator><creator>Stokes, Andrew C</creator><creator>Essien, Utibe R</creator><creator>De Neve, Jan-Walter</creator><creator>Atun, Rifat</creator><creator>Davies, Justine I</creator><creator>Vollmer, Sebastian</creator><creator>Bärnighausen, Till W</creator><creator>Ali, Mohammed K</creator><creator>Meigs, James B</creator><creator>Wexler, Deborah J</creator><creator>Manne-Goehler, Jennifer</creator><general>Elsevier Ltd</general><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TT</scope><scope>0TZ</scope><scope>0U~</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88C</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8C2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>KB~</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20210717</creationdate><title>Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults</title><author>Teufel, Felix ; Seiglie, Jacqueline A ; Geldsetzer, Pascal ; Theilmann, Michaela ; Marcus, Maja E ; Ebert, Cara ; Arboleda, William Andres Lopez ; Agoudavi, Kokou ; Andall-Brereton, Glennis ; Aryal, Krishna K ; Bicaba, Brice Wilfried ; Brian, Garry ; Bovet, Pascal ; Dorobantu, Maria ; Gurung, Mongal Singh ; Guwatudde, David ; Houehanou, Corine ; Houinato, Dismand ; Jorgensen, Jutta M Adelin ; Kagaruki, Gibson B ; Karki, Khem B ; Labadarios, Demetre ; Martins, Joao S ; Mayige, Mary T ; McClure, Roy Wong ; Mwangi, Joseph Kibachio ; Mwalim, Omar ; Norov, Bolormaa ; Crooks, Sarah ; Farzadfar, Farshad ; Moghaddam, Sahar Saeedi ; Silver, Bahendeka K ; Sturua, Lela ; Wesseh, Chea Stanford ; Stokes, Andrew C ; Essien, Utibe R ; De Neve, Jan-Walter ; Atun, Rifat ; Davies, Justine I ; Vollmer, Sebastian ; Bärnighausen, Till W ; Ali, Mohammed K ; Meigs, James B ; Wexler, Deborah J ; Manne-Goehler, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-be22ba82677a955ee57c044897df59d554290bd1a62485f8d34c2ae7c4ba35ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Biomarkers</topic><topic>Body Mass Index</topic><topic>Body weight</topic><topic>Cross-Sectional Studies</topic><topic>Datasets</topic><topic>Developing Countries - statistics & numerical data</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Empirical analysis</topic><topic>Fasting</topic><topic>Female</topic><topic>Global Health</topic><topic>Glucose</topic><topic>Glycated Hemoglobin - analysis</topic><topic>Health risks</topic><topic>Health Surveys</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Income</topic><topic>Infectious diseases</topic><topic>Low income groups</topic><topic>Male</topic><topic>Men</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>Overweight</topic><topic>Plasma</topic><topic>Polls & surveys</topic><topic>Population</topic><topic>Poverty</topic><topic>Prevalence</topic><topic>Public health</topic><topic>Screening</topic><topic>Sex</topic><topic>Thresholds</topic><topic>Trends</topic><topic>Women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teufel, Felix</creatorcontrib><creatorcontrib>Seiglie, Jacqueline A</creatorcontrib><creatorcontrib>Geldsetzer, Pascal</creatorcontrib><creatorcontrib>Theilmann, Michaela</creatorcontrib><creatorcontrib>Marcus, Maja E</creatorcontrib><creatorcontrib>Ebert, Cara</creatorcontrib><creatorcontrib>Arboleda, William Andres Lopez</creatorcontrib><creatorcontrib>Agoudavi, Kokou</creatorcontrib><creatorcontrib>Andall-Brereton, Glennis</creatorcontrib><creatorcontrib>Aryal, Krishna K</creatorcontrib><creatorcontrib>Bicaba, Brice Wilfried</creatorcontrib><creatorcontrib>Brian, Garry</creatorcontrib><creatorcontrib>Bovet, Pascal</creatorcontrib><creatorcontrib>Dorobantu, Maria</creatorcontrib><creatorcontrib>Gurung, Mongal Singh</creatorcontrib><creatorcontrib>Guwatudde, David</creatorcontrib><creatorcontrib>Houehanou, Corine</creatorcontrib><creatorcontrib>Houinato, Dismand</creatorcontrib><creatorcontrib>Jorgensen, Jutta M Adelin</creatorcontrib><creatorcontrib>Kagaruki, Gibson B</creatorcontrib><creatorcontrib>Karki, Khem B</creatorcontrib><creatorcontrib>Labadarios, Demetre</creatorcontrib><creatorcontrib>Martins, Joao S</creatorcontrib><creatorcontrib>Mayige, Mary T</creatorcontrib><creatorcontrib>McClure, Roy Wong</creatorcontrib><creatorcontrib>Mwangi, Joseph Kibachio</creatorcontrib><creatorcontrib>Mwalim, Omar</creatorcontrib><creatorcontrib>Norov, Bolormaa</creatorcontrib><creatorcontrib>Crooks, Sarah</creatorcontrib><creatorcontrib>Farzadfar, Farshad</creatorcontrib><creatorcontrib>Moghaddam, Sahar Saeedi</creatorcontrib><creatorcontrib>Silver, Bahendeka K</creatorcontrib><creatorcontrib>Sturua, Lela</creatorcontrib><creatorcontrib>Wesseh, Chea Stanford</creatorcontrib><creatorcontrib>Stokes, Andrew C</creatorcontrib><creatorcontrib>Essien, Utibe R</creatorcontrib><creatorcontrib>De Neve, Jan-Walter</creatorcontrib><creatorcontrib>Atun, Rifat</creatorcontrib><creatorcontrib>Davies, Justine I</creatorcontrib><creatorcontrib>Vollmer, Sebastian</creatorcontrib><creatorcontrib>Bärnighausen, Till W</creatorcontrib><creatorcontrib>Ali, Mohammed K</creatorcontrib><creatorcontrib>Meigs, James B</creatorcontrib><creatorcontrib>Wexler, Deborah J</creatorcontrib><creatorcontrib>Manne-Goehler, Jennifer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>News PRO</collection><collection>Pharma and Biotech Premium PRO</collection><collection>Global News & ABI/Inform Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Lancet Titles</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Newsstand Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>The Lancet (British edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teufel, Felix</au><au>Seiglie, Jacqueline A</au><au>Geldsetzer, Pascal</au><au>Theilmann, Michaela</au><au>Marcus, Maja E</au><au>Ebert, Cara</au><au>Arboleda, William Andres Lopez</au><au>Agoudavi, Kokou</au><au>Andall-Brereton, Glennis</au><au>Aryal, Krishna K</au><au>Bicaba, Brice Wilfried</au><au>Brian, Garry</au><au>Bovet, Pascal</au><au>Dorobantu, Maria</au><au>Gurung, Mongal Singh</au><au>Guwatudde, David</au><au>Houehanou, Corine</au><au>Houinato, Dismand</au><au>Jorgensen, Jutta M Adelin</au><au>Kagaruki, Gibson B</au><au>Karki, Khem B</au><au>Labadarios, Demetre</au><au>Martins, Joao S</au><au>Mayige, Mary T</au><au>McClure, Roy Wong</au><au>Mwangi, Joseph Kibachio</au><au>Mwalim, Omar</au><au>Norov, Bolormaa</au><au>Crooks, Sarah</au><au>Farzadfar, Farshad</au><au>Moghaddam, Sahar Saeedi</au><au>Silver, Bahendeka K</au><au>Sturua, Lela</au><au>Wesseh, Chea Stanford</au><au>Stokes, Andrew C</au><au>Essien, Utibe R</au><au>De Neve, Jan-Walter</au><au>Atun, Rifat</au><au>Davies, Justine I</au><au>Vollmer, Sebastian</au><au>Bärnighausen, Till W</au><au>Ali, Mohammed K</au><au>Meigs, James B</au><au>Wexler, Deborah J</au><au>Manne-Goehler, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults</atitle><jtitle>The Lancet (British edition)</jtitle><addtitle>Lancet</addtitle><date>2021-07-17</date><risdate>2021</risdate><volume>398</volume><issue>10296</issue><spage>238</spage><epage>248</epage><pages>238-248</pages><issn>0140-6736</issn><eissn>1474-547X</eissn><abstract>The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings.
In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA1c]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA1c of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5–22·9 kg/m2], upper-normal [23·0–24·9 kg/m2], overweight [25·0–29·9 kg/m2], or obese [≥30·0 kg/m2]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region.
Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6–27·8), of obesity was 21·0% (19·6–22·5), and of diabetes was 9·3% (8·4–10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m2 or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5–22·9 kg/m2. Diabetes risk also increased steeply in individuals aged 35–44 years and in men aged 25–34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m2 among men in east, south, and southeast Asia to 28·3 kg/m2 among women in the Middle East and north Africa and in Latin America and the Caribbean.
The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines.
Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34274065</pmid><doi>10.1016/S0140-6736(21)00844-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-6736 |
ispartof | The Lancet (British edition), 2021-07, Vol.398 (10296), p.238-248 |
issn | 0140-6736 1474-547X |
language | eng |
recordid | cdi_proquest_miscellaneous_2553233540 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Adult Biomarkers Body Mass Index Body weight Cross-Sectional Studies Datasets Developing Countries - statistics & numerical data Diabetes Diabetes mellitus Diabetes Mellitus - diagnosis Diabetes Mellitus - epidemiology Empirical analysis Fasting Female Global Health Glucose Glycated Hemoglobin - analysis Health risks Health Surveys Hemoglobin Humans Income Infectious diseases Low income groups Male Men Metabolism Middle Aged Obesity Obesity - epidemiology Overweight Plasma Polls & surveys Population Poverty Prevalence Public health Screening Sex Thresholds Trends Women |
title | Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Body-mass%20index%20and%20diabetes%20risk%20in%2057%20low-income%20and%20middle-income%20countries:%20a%20cross-sectional%20study%20of%20nationally%20representative,%20individual-level%20data%20in%20685%E2%80%88616%20adults&rft.jtitle=The%20Lancet%20(British%20edition)&rft.au=Teufel,%20Felix&rft.date=2021-07-17&rft.volume=398&rft.issue=10296&rft.spage=238&rft.epage=248&rft.pages=238-248&rft.issn=0140-6736&rft.eissn=1474-547X&rft_id=info:doi/10.1016/S0140-6736(21)00844-8&rft_dat=%3Cgale_proqu%3EA668655162%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552016701&rft_id=info:pmid/34274065&rft_galeid=A668655162&rft_els_id=S0140673621008448&rfr_iscdi=true |