Understanding lower limb muscle volume adaptations to amputation
Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninju...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2021-08, Vol.125, p.110599-110599, Article 110599 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110599 |
---|---|
container_issue | |
container_start_page | 110599 |
container_title | Journal of biomechanics |
container_volume | 125 |
creator | Henson, David P. Edgar, Caitlin Ding, Ziyun Sivapuratharasu, Biranavan Le Feuvre, Peter Finnegan, Mary E. Quest, Rebecca McGregor, Alison H. Bull, Anthony M.J. |
description | Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings.
This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss. |
doi_str_mv | 10.1016/j.jbiomech.2021.110599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552997312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929021003766</els_id><sourcerecordid>2552997312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BSl48dKapEmb3FYWv2DBi3sOaTLVlLapSbviv7dL9eLF0zDM8w4zD0JXBGcEk-K2yZrK-Q7Me0YxJRkhmEt5hFZElHlKc4GP0QrPk1RSiU_RWYwNxrhkpVyh9a63EOKoe-v6t6T1nxCS1nVV0k3RtJDsfTt1kGirh1GPzvcxGX2iu2Fa2gt0Uus2wuVPPUe7h_vXzVO6fXl83txtU8MoGVPLjJZYV7zWvOQFK3NbM45LY3QuDCuqAkglpQFJmWBEGGmxZUA4r1nNSZ6fo5tl7xD8xwRxVJ2LBtpW9-CnqCjnVMoyJ3RGr_-gjZ9CP193oARjmAkxU8VCmeBjDFCrIbhOhy9FsDqIVY36FasOYtUidg6ulyDM7-4dBBWNg96AdQHMqKx3_634BrGvhFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558440488</pqid></control><display><type>article</type><title>Understanding lower limb muscle volume adaptations to amputation</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</creator><creatorcontrib>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</creatorcontrib><description>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings.
This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2021.110599</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptation ; Amputation ; Amputee ; Atrophy ; Compensation ; Femur ; Flexors ; Hypertrophy ; Magnetic resonance imaging ; Muscle ; Muscle volume ; Muscles ; Musculoskeletal ; Prostheses ; Regression analysis ; Tibia</subject><ispartof>Journal of biomechanics, 2021-08, Vol.125, p.110599-110599, Article 110599</ispartof><rights>2021 The Authors</rights><rights>2021. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</citedby><cites>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</cites><orcidid>0000-0002-5575-6097 ; 0000-0002-8924-0945 ; 0000-0001-5655-0886 ; 0000-0003-0876-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2558440488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Henson, David P.</creatorcontrib><creatorcontrib>Edgar, Caitlin</creatorcontrib><creatorcontrib>Ding, Ziyun</creatorcontrib><creatorcontrib>Sivapuratharasu, Biranavan</creatorcontrib><creatorcontrib>Le Feuvre, Peter</creatorcontrib><creatorcontrib>Finnegan, Mary E.</creatorcontrib><creatorcontrib>Quest, Rebecca</creatorcontrib><creatorcontrib>McGregor, Alison H.</creatorcontrib><creatorcontrib>Bull, Anthony M.J.</creatorcontrib><title>Understanding lower limb muscle volume adaptations to amputation</title><title>Journal of biomechanics</title><description>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings.
This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</description><subject>Adaptation</subject><subject>Amputation</subject><subject>Amputee</subject><subject>Atrophy</subject><subject>Compensation</subject><subject>Femur</subject><subject>Flexors</subject><subject>Hypertrophy</subject><subject>Magnetic resonance imaging</subject><subject>Muscle</subject><subject>Muscle volume</subject><subject>Muscles</subject><subject>Musculoskeletal</subject><subject>Prostheses</subject><subject>Regression analysis</subject><subject>Tibia</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LxDAQhoMouH78BSl48dKapEmb3FYWv2DBi3sOaTLVlLapSbviv7dL9eLF0zDM8w4zD0JXBGcEk-K2yZrK-Q7Me0YxJRkhmEt5hFZElHlKc4GP0QrPk1RSiU_RWYwNxrhkpVyh9a63EOKoe-v6t6T1nxCS1nVV0k3RtJDsfTt1kGirh1GPzvcxGX2iu2Fa2gt0Uus2wuVPPUe7h_vXzVO6fXl83txtU8MoGVPLjJZYV7zWvOQFK3NbM45LY3QuDCuqAkglpQFJmWBEGGmxZUA4r1nNSZ6fo5tl7xD8xwRxVJ2LBtpW9-CnqCjnVMoyJ3RGr_-gjZ9CP193oARjmAkxU8VCmeBjDFCrIbhOhy9FsDqIVY36FasOYtUidg6ulyDM7-4dBBWNg96AdQHMqKx3_634BrGvhFU</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Henson, David P.</creator><creator>Edgar, Caitlin</creator><creator>Ding, Ziyun</creator><creator>Sivapuratharasu, Biranavan</creator><creator>Le Feuvre, Peter</creator><creator>Finnegan, Mary E.</creator><creator>Quest, Rebecca</creator><creator>McGregor, Alison H.</creator><creator>Bull, Anthony M.J.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5575-6097</orcidid><orcidid>https://orcid.org/0000-0002-8924-0945</orcidid><orcidid>https://orcid.org/0000-0001-5655-0886</orcidid><orcidid>https://orcid.org/0000-0003-0876-5190</orcidid></search><sort><creationdate>20210826</creationdate><title>Understanding lower limb muscle volume adaptations to amputation</title><author>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Amputation</topic><topic>Amputee</topic><topic>Atrophy</topic><topic>Compensation</topic><topic>Femur</topic><topic>Flexors</topic><topic>Hypertrophy</topic><topic>Magnetic resonance imaging</topic><topic>Muscle</topic><topic>Muscle volume</topic><topic>Muscles</topic><topic>Musculoskeletal</topic><topic>Prostheses</topic><topic>Regression analysis</topic><topic>Tibia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henson, David P.</creatorcontrib><creatorcontrib>Edgar, Caitlin</creatorcontrib><creatorcontrib>Ding, Ziyun</creatorcontrib><creatorcontrib>Sivapuratharasu, Biranavan</creatorcontrib><creatorcontrib>Le Feuvre, Peter</creatorcontrib><creatorcontrib>Finnegan, Mary E.</creatorcontrib><creatorcontrib>Quest, Rebecca</creatorcontrib><creatorcontrib>McGregor, Alison H.</creatorcontrib><creatorcontrib>Bull, Anthony M.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henson, David P.</au><au>Edgar, Caitlin</au><au>Ding, Ziyun</au><au>Sivapuratharasu, Biranavan</au><au>Le Feuvre, Peter</au><au>Finnegan, Mary E.</au><au>Quest, Rebecca</au><au>McGregor, Alison H.</au><au>Bull, Anthony M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding lower limb muscle volume adaptations to amputation</atitle><jtitle>Journal of biomechanics</jtitle><date>2021-08-26</date><risdate>2021</risdate><volume>125</volume><spage>110599</spage><epage>110599</epage><pages>110599-110599</pages><artnum>110599</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings.
This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2021.110599</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5575-6097</orcidid><orcidid>https://orcid.org/0000-0002-8924-0945</orcidid><orcidid>https://orcid.org/0000-0001-5655-0886</orcidid><orcidid>https://orcid.org/0000-0003-0876-5190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2021-08, Vol.125, p.110599-110599, Article 110599 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_2552997312 |
source | Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Adaptation Amputation Amputee Atrophy Compensation Femur Flexors Hypertrophy Magnetic resonance imaging Muscle Muscle volume Muscles Musculoskeletal Prostheses Regression analysis Tibia |
title | Understanding lower limb muscle volume adaptations to amputation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20lower%20limb%20muscle%20volume%20adaptations%20to%20amputation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Henson,%20David%20P.&rft.date=2021-08-26&rft.volume=125&rft.spage=110599&rft.epage=110599&rft.pages=110599-110599&rft.artnum=110599&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2021.110599&rft_dat=%3Cproquest_cross%3E2552997312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558440488&rft_id=info:pmid/&rft_els_id=S0021929021003766&rfr_iscdi=true |