Understanding lower limb muscle volume adaptations to amputation

Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2021-08, Vol.125, p.110599-110599, Article 110599
Hauptverfasser: Henson, David P., Edgar, Caitlin, Ding, Ziyun, Sivapuratharasu, Biranavan, Le Feuvre, Peter, Finnegan, Mary E., Quest, Rebecca, McGregor, Alison H., Bull, Anthony M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110599
container_issue
container_start_page 110599
container_title Journal of biomechanics
container_volume 125
creator Henson, David P.
Edgar, Caitlin
Ding, Ziyun
Sivapuratharasu, Biranavan
Le Feuvre, Peter
Finnegan, Mary E.
Quest, Rebecca
McGregor, Alison H.
Bull, Anthony M.J.
description Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings. This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.
doi_str_mv 10.1016/j.jbiomech.2021.110599
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552997312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929021003766</els_id><sourcerecordid>2552997312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BSl48dKapEmb3FYWv2DBi3sOaTLVlLapSbviv7dL9eLF0zDM8w4zD0JXBGcEk-K2yZrK-Q7Me0YxJRkhmEt5hFZElHlKc4GP0QrPk1RSiU_RWYwNxrhkpVyh9a63EOKoe-v6t6T1nxCS1nVV0k3RtJDsfTt1kGirh1GPzvcxGX2iu2Fa2gt0Uus2wuVPPUe7h_vXzVO6fXl83txtU8MoGVPLjJZYV7zWvOQFK3NbM45LY3QuDCuqAkglpQFJmWBEGGmxZUA4r1nNSZ6fo5tl7xD8xwRxVJ2LBtpW9-CnqCjnVMoyJ3RGr_-gjZ9CP193oARjmAkxU8VCmeBjDFCrIbhOhy9FsDqIVY36FasOYtUidg6ulyDM7-4dBBWNg96AdQHMqKx3_634BrGvhFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558440488</pqid></control><display><type>article</type><title>Understanding lower limb muscle volume adaptations to amputation</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</creator><creatorcontrib>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</creatorcontrib><description>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings. This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2021.110599</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptation ; Amputation ; Amputee ; Atrophy ; Compensation ; Femur ; Flexors ; Hypertrophy ; Magnetic resonance imaging ; Muscle ; Muscle volume ; Muscles ; Musculoskeletal ; Prostheses ; Regression analysis ; Tibia</subject><ispartof>Journal of biomechanics, 2021-08, Vol.125, p.110599-110599, Article 110599</ispartof><rights>2021 The Authors</rights><rights>2021. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</citedby><cites>FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</cites><orcidid>0000-0002-5575-6097 ; 0000-0002-8924-0945 ; 0000-0001-5655-0886 ; 0000-0003-0876-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2558440488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Henson, David P.</creatorcontrib><creatorcontrib>Edgar, Caitlin</creatorcontrib><creatorcontrib>Ding, Ziyun</creatorcontrib><creatorcontrib>Sivapuratharasu, Biranavan</creatorcontrib><creatorcontrib>Le Feuvre, Peter</creatorcontrib><creatorcontrib>Finnegan, Mary E.</creatorcontrib><creatorcontrib>Quest, Rebecca</creatorcontrib><creatorcontrib>McGregor, Alison H.</creatorcontrib><creatorcontrib>Bull, Anthony M.J.</creatorcontrib><title>Understanding lower limb muscle volume adaptations to amputation</title><title>Journal of biomechanics</title><description>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings. This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</description><subject>Adaptation</subject><subject>Amputation</subject><subject>Amputee</subject><subject>Atrophy</subject><subject>Compensation</subject><subject>Femur</subject><subject>Flexors</subject><subject>Hypertrophy</subject><subject>Magnetic resonance imaging</subject><subject>Muscle</subject><subject>Muscle volume</subject><subject>Muscles</subject><subject>Musculoskeletal</subject><subject>Prostheses</subject><subject>Regression analysis</subject><subject>Tibia</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LxDAQhoMouH78BSl48dKapEmb3FYWv2DBi3sOaTLVlLapSbviv7dL9eLF0zDM8w4zD0JXBGcEk-K2yZrK-Q7Me0YxJRkhmEt5hFZElHlKc4GP0QrPk1RSiU_RWYwNxrhkpVyh9a63EOKoe-v6t6T1nxCS1nVV0k3RtJDsfTt1kGirh1GPzvcxGX2iu2Fa2gt0Uus2wuVPPUe7h_vXzVO6fXl83txtU8MoGVPLjJZYV7zWvOQFK3NbM45LY3QuDCuqAkglpQFJmWBEGGmxZUA4r1nNSZ6fo5tl7xD8xwRxVJ2LBtpW9-CnqCjnVMoyJ3RGr_-gjZ9CP193oARjmAkxU8VCmeBjDFCrIbhOhy9FsDqIVY36FasOYtUidg6ulyDM7-4dBBWNg96AdQHMqKx3_634BrGvhFU</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Henson, David P.</creator><creator>Edgar, Caitlin</creator><creator>Ding, Ziyun</creator><creator>Sivapuratharasu, Biranavan</creator><creator>Le Feuvre, Peter</creator><creator>Finnegan, Mary E.</creator><creator>Quest, Rebecca</creator><creator>McGregor, Alison H.</creator><creator>Bull, Anthony M.J.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5575-6097</orcidid><orcidid>https://orcid.org/0000-0002-8924-0945</orcidid><orcidid>https://orcid.org/0000-0001-5655-0886</orcidid><orcidid>https://orcid.org/0000-0003-0876-5190</orcidid></search><sort><creationdate>20210826</creationdate><title>Understanding lower limb muscle volume adaptations to amputation</title><author>Henson, David P. ; Edgar, Caitlin ; Ding, Ziyun ; Sivapuratharasu, Biranavan ; Le Feuvre, Peter ; Finnegan, Mary E. ; Quest, Rebecca ; McGregor, Alison H. ; Bull, Anthony M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d4ca90ab5fa5756473df4507cca38c46b6e1b99ce9248418c9d0d4e155f4f5133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Amputation</topic><topic>Amputee</topic><topic>Atrophy</topic><topic>Compensation</topic><topic>Femur</topic><topic>Flexors</topic><topic>Hypertrophy</topic><topic>Magnetic resonance imaging</topic><topic>Muscle</topic><topic>Muscle volume</topic><topic>Muscles</topic><topic>Musculoskeletal</topic><topic>Prostheses</topic><topic>Regression analysis</topic><topic>Tibia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henson, David P.</creatorcontrib><creatorcontrib>Edgar, Caitlin</creatorcontrib><creatorcontrib>Ding, Ziyun</creatorcontrib><creatorcontrib>Sivapuratharasu, Biranavan</creatorcontrib><creatorcontrib>Le Feuvre, Peter</creatorcontrib><creatorcontrib>Finnegan, Mary E.</creatorcontrib><creatorcontrib>Quest, Rebecca</creatorcontrib><creatorcontrib>McGregor, Alison H.</creatorcontrib><creatorcontrib>Bull, Anthony M.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henson, David P.</au><au>Edgar, Caitlin</au><au>Ding, Ziyun</au><au>Sivapuratharasu, Biranavan</au><au>Le Feuvre, Peter</au><au>Finnegan, Mary E.</au><au>Quest, Rebecca</au><au>McGregor, Alison H.</au><au>Bull, Anthony M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding lower limb muscle volume adaptations to amputation</atitle><jtitle>Journal of biomechanics</jtitle><date>2021-08-26</date><risdate>2021</risdate><volume>125</volume><spage>110599</spage><epage>110599</epage><pages>110599-110599</pages><artnum>110599</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Amputation of a major limb, and the subsequent return to movement with a prosthesis, requires the development of compensatory strategies to account for the loss. Such strategies, over time, lead to regional muscle atrophy and hypertrophy through chronic under or overuse of muscles compared to uninjured individuals. The aim of this study was to quantify the lower limb muscle parameters of persons with transtibial and transfemoral amputations using high resolution MRI to ascertain muscle volume and to determine regression equations for predicting muscle volume using femur- and tibia-length, pelvic-width, height, and mass. Twelve persons with limb loss participated in this study and their data were compared to six matched control subjects. Subjects with unilateral transtibial amputation showed whole-limb muscle volume loss in the residual-limb, whereas minor volume changes in the intact limb were found, providing evidence for a compensation strategy that is dominated by the intact-limb. Subjects with bilateral-transfemoral amputations showed significant muscle volume increases in the short adductor muscles with an insertion not affected by the amputation, the hip flexors, and the gluteus medius, and significant volume decreases in the longer adductor muscles, rectus femoris, and hamstrings. This study presents a benchmark measure of muscle volume discrepancies in persons with limb-loss, and can be used to understand the compensation strategies of persons with limb-loss and the impact on muscle volume, thus enabling the development of optimised intervention protocols, conditioning therapies, surgical techniques, and prosthetic devices that promote and enhance functional capability within the population of persons with limb loss.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2021.110599</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5575-6097</orcidid><orcidid>https://orcid.org/0000-0002-8924-0945</orcidid><orcidid>https://orcid.org/0000-0001-5655-0886</orcidid><orcidid>https://orcid.org/0000-0003-0876-5190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2021-08, Vol.125, p.110599-110599, Article 110599
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_2552997312
source Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Adaptation
Amputation
Amputee
Atrophy
Compensation
Femur
Flexors
Hypertrophy
Magnetic resonance imaging
Muscle
Muscle volume
Muscles
Musculoskeletal
Prostheses
Regression analysis
Tibia
title Understanding lower limb muscle volume adaptations to amputation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20lower%20limb%20muscle%20volume%20adaptations%20to%20amputation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Henson,%20David%20P.&rft.date=2021-08-26&rft.volume=125&rft.spage=110599&rft.epage=110599&rft.pages=110599-110599&rft.artnum=110599&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2021.110599&rft_dat=%3Cproquest_cross%3E2552997312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558440488&rft_id=info:pmid/&rft_els_id=S0021929021003766&rfr_iscdi=true