Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment

Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-10, Vol.134, p.131-143
Hauptverfasser: Pérez-Rafael, Sílvia, Ivanova, Kristina, Stefanov, Ivaylo, Puiggalí, Jordi, del Valle, Luis Javier, Todorova, Katerina, Dimitrov, Petar, Hinojosa-Caballero, Dolores, Tzanov, Tzanko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue
container_start_page 131
container_title Acta biomaterialia
container_volume 134
creator Pérez-Rafael, Sílvia
Ivanova, Kristina
Stefanov, Ivaylo
Puiggalí, Jordi
del Valle, Luis Javier
Todorova, Katerina
Dimitrov, Petar
Hinojosa-Caballero, Dolores
Tzanov, Tzanko
description Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load. [Display omitted]
doi_str_mv 10.1016/j.actbio.2021.07.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552987119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121004517</els_id><sourcerecordid>2552987119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxQexYG39D1wE3LiZMR-TycxGkGJboehG1yEfN30ZMskzybzS_96U58qFq3vh_s7lcE7XvSd4IJhMn9ZBmap9GiimZMBiwBS_6i7JLOZe8Gl-3XYx0l7gibzp3payYsxmQufL7um7iumocvUmQG-zP0FEBYLrVSmw6eDjI_JxBVOVDoAOzzanRwgFHXM6eQtIoW0P1feueUjZq4DUsd2UOSCXMjKHnKI36Cnt0aKaQdUNYr3uLpwKBd79nVfdr9uvP2_u-4cfd99uvjz0ZiSs9lRPxPFZMMXEqEftFj5Z7QyejAWOtQECeiHGqZEaZ9nCFMdUsIUztRBi2VX38fy3Wfq9Q6ly88VACCpC2ouknNNlFoQsDf3wD7qmPcfmTtIJj7Pg40QbNZ4pk1MpGZw8Zr-p_CwJli9tyFWe25AvbUgsZGujyT6fZS06OHnIshgP0YD1uWUrbfL_f_AHVhKXpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604875462</pqid></control><display><type>article</type><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</creator><creatorcontrib>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</creatorcontrib><description>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.07.020</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Antibacterial activity ; Antioxidants ; Bacteria ; Bacterial diseases ; Bacterial infections ; Biocompatibility ; Chronic wounds ; Crosslinking ; Diabetes mellitus ; Dressing materials ; Enzymes ; Exudation ; Hyaluronic acid ; Hydrogels ; Infections ; Keratinocytes ; Lignin ; Matrix metalloproteinase ; Matrix metalloproteinases ; Nano-enabled hydrogels ; Nanocomposites ; Nanoparticles ; Peroxidase ; Polymers ; Proteolysis ; Pseudomonas aeruginosa ; Self-assembling ; Self-assembly ; Shear stress ; Shear thinning (liquids) ; Silver ; Silver-lignin nanoparticles ; Thinning ; Thiolated hyaluronic acid ; Toxicity ; Wound healing</subject><ispartof>Acta biomaterialia, 2021-10, Vol.134, p.131-143</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</citedby><cites>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121004517$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pérez-Rafael, Sílvia</creatorcontrib><creatorcontrib>Ivanova, Kristina</creatorcontrib><creatorcontrib>Stefanov, Ivaylo</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>del Valle, Luis Javier</creatorcontrib><creatorcontrib>Todorova, Katerina</creatorcontrib><creatorcontrib>Dimitrov, Petar</creatorcontrib><creatorcontrib>Hinojosa-Caballero, Dolores</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><title>Acta biomaterialia</title><description>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load. [Display omitted]</description><subject>Antibacterial activity</subject><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Biocompatibility</subject><subject>Chronic wounds</subject><subject>Crosslinking</subject><subject>Diabetes mellitus</subject><subject>Dressing materials</subject><subject>Enzymes</subject><subject>Exudation</subject><subject>Hyaluronic acid</subject><subject>Hydrogels</subject><subject>Infections</subject><subject>Keratinocytes</subject><subject>Lignin</subject><subject>Matrix metalloproteinase</subject><subject>Matrix metalloproteinases</subject><subject>Nano-enabled hydrogels</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Peroxidase</subject><subject>Polymers</subject><subject>Proteolysis</subject><subject>Pseudomonas aeruginosa</subject><subject>Self-assembling</subject><subject>Self-assembly</subject><subject>Shear stress</subject><subject>Shear thinning (liquids)</subject><subject>Silver</subject><subject>Silver-lignin nanoparticles</subject><subject>Thinning</subject><subject>Thiolated hyaluronic acid</subject><subject>Toxicity</subject><subject>Wound healing</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxQexYG39D1wE3LiZMR-TycxGkGJboehG1yEfN30ZMskzybzS_96U58qFq3vh_s7lcE7XvSd4IJhMn9ZBmap9GiimZMBiwBS_6i7JLOZe8Gl-3XYx0l7gibzp3payYsxmQufL7um7iumocvUmQG-zP0FEBYLrVSmw6eDjI_JxBVOVDoAOzzanRwgFHXM6eQtIoW0P1feueUjZq4DUsd2UOSCXMjKHnKI36Cnt0aKaQdUNYr3uLpwKBd79nVfdr9uvP2_u-4cfd99uvjz0ZiSs9lRPxPFZMMXEqEftFj5Z7QyejAWOtQECeiHGqZEaZ9nCFMdUsIUztRBi2VX38fy3Wfq9Q6ly88VACCpC2ouknNNlFoQsDf3wD7qmPcfmTtIJj7Pg40QbNZ4pk1MpGZw8Zr-p_CwJli9tyFWe25AvbUgsZGujyT6fZS06OHnIshgP0YD1uWUrbfL_f_AHVhKXpg</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Pérez-Rafael, Sílvia</creator><creator>Ivanova, Kristina</creator><creator>Stefanov, Ivaylo</creator><creator>Puiggalí, Jordi</creator><creator>del Valle, Luis Javier</creator><creator>Todorova, Katerina</creator><creator>Dimitrov, Petar</creator><creator>Hinojosa-Caballero, Dolores</creator><creator>Tzanov, Tzanko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211015</creationdate><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><author>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibacterial activity</topic><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Biocompatibility</topic><topic>Chronic wounds</topic><topic>Crosslinking</topic><topic>Diabetes mellitus</topic><topic>Dressing materials</topic><topic>Enzymes</topic><topic>Exudation</topic><topic>Hyaluronic acid</topic><topic>Hydrogels</topic><topic>Infections</topic><topic>Keratinocytes</topic><topic>Lignin</topic><topic>Matrix metalloproteinase</topic><topic>Matrix metalloproteinases</topic><topic>Nano-enabled hydrogels</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Peroxidase</topic><topic>Polymers</topic><topic>Proteolysis</topic><topic>Pseudomonas aeruginosa</topic><topic>Self-assembling</topic><topic>Self-assembly</topic><topic>Shear stress</topic><topic>Shear thinning (liquids)</topic><topic>Silver</topic><topic>Silver-lignin nanoparticles</topic><topic>Thinning</topic><topic>Thiolated hyaluronic acid</topic><topic>Toxicity</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Rafael, Sílvia</creatorcontrib><creatorcontrib>Ivanova, Kristina</creatorcontrib><creatorcontrib>Stefanov, Ivaylo</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>del Valle, Luis Javier</creatorcontrib><creatorcontrib>Todorova, Katerina</creatorcontrib><creatorcontrib>Dimitrov, Petar</creatorcontrib><creatorcontrib>Hinojosa-Caballero, Dolores</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Rafael, Sílvia</au><au>Ivanova, Kristina</au><au>Stefanov, Ivaylo</au><au>Puiggalí, Jordi</au><au>del Valle, Luis Javier</au><au>Todorova, Katerina</au><au>Dimitrov, Petar</au><au>Hinojosa-Caballero, Dolores</au><au>Tzanov, Tzanko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</atitle><jtitle>Acta biomaterialia</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>134</volume><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2021.07.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-10, Vol.134, p.131-143
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2552987119
source Elsevier ScienceDirect Journals
subjects Antibacterial activity
Antioxidants
Bacteria
Bacterial diseases
Bacterial infections
Biocompatibility
Chronic wounds
Crosslinking
Diabetes mellitus
Dressing materials
Enzymes
Exudation
Hyaluronic acid
Hydrogels
Infections
Keratinocytes
Lignin
Matrix metalloproteinase
Matrix metalloproteinases
Nano-enabled hydrogels
Nanocomposites
Nanoparticles
Peroxidase
Polymers
Proteolysis
Pseudomonas aeruginosa
Self-assembling
Self-assembly
Shear stress
Shear thinning (liquids)
Silver
Silver-lignin nanoparticles
Thinning
Thiolated hyaluronic acid
Toxicity
Wound healing
title Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-driven%20self-assembling%20injectable%20hydrogels%20provide%20a%20multi-factorial%20approach%20for%20chronic%20wound%20treatment&rft.jtitle=Acta%20biomaterialia&rft.au=P%C3%A9rez-Rafael,%20S%C3%ADlvia&rft.date=2021-10-15&rft.volume=134&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.07.020&rft_dat=%3Cproquest_cross%3E2552987119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604875462&rft_id=info:pmid/&rft_els_id=S1742706121004517&rfr_iscdi=true