Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment
Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we de...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-10, Vol.134, p.131-143 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | Acta biomaterialia |
container_volume | 134 |
creator | Pérez-Rafael, Sílvia Ivanova, Kristina Stefanov, Ivaylo Puiggalí, Jordi del Valle, Luis Javier Todorova, Katerina Dimitrov, Petar Hinojosa-Caballero, Dolores Tzanov, Tzanko |
description | Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management.
Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2021.07.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552987119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121004517</els_id><sourcerecordid>2552987119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxQexYG39D1wE3LiZMR-TycxGkGJboehG1yEfN30ZMskzybzS_96U58qFq3vh_s7lcE7XvSd4IJhMn9ZBmap9GiimZMBiwBS_6i7JLOZe8Gl-3XYx0l7gibzp3payYsxmQufL7um7iumocvUmQG-zP0FEBYLrVSmw6eDjI_JxBVOVDoAOzzanRwgFHXM6eQtIoW0P1feueUjZq4DUsd2UOSCXMjKHnKI36Cnt0aKaQdUNYr3uLpwKBd79nVfdr9uvP2_u-4cfd99uvjz0ZiSs9lRPxPFZMMXEqEftFj5Z7QyejAWOtQECeiHGqZEaZ9nCFMdUsIUztRBi2VX38fy3Wfq9Q6ly88VACCpC2ouknNNlFoQsDf3wD7qmPcfmTtIJj7Pg40QbNZ4pk1MpGZw8Zr-p_CwJli9tyFWe25AvbUgsZGujyT6fZS06OHnIshgP0YD1uWUrbfL_f_AHVhKXpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604875462</pqid></control><display><type>article</type><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</creator><creatorcontrib>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</creatorcontrib><description>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management.
Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.07.020</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Antibacterial activity ; Antioxidants ; Bacteria ; Bacterial diseases ; Bacterial infections ; Biocompatibility ; Chronic wounds ; Crosslinking ; Diabetes mellitus ; Dressing materials ; Enzymes ; Exudation ; Hyaluronic acid ; Hydrogels ; Infections ; Keratinocytes ; Lignin ; Matrix metalloproteinase ; Matrix metalloproteinases ; Nano-enabled hydrogels ; Nanocomposites ; Nanoparticles ; Peroxidase ; Polymers ; Proteolysis ; Pseudomonas aeruginosa ; Self-assembling ; Self-assembly ; Shear stress ; Shear thinning (liquids) ; Silver ; Silver-lignin nanoparticles ; Thinning ; Thiolated hyaluronic acid ; Toxicity ; Wound healing</subject><ispartof>Acta biomaterialia, 2021-10, Vol.134, p.131-143</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</citedby><cites>FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121004517$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pérez-Rafael, Sílvia</creatorcontrib><creatorcontrib>Ivanova, Kristina</creatorcontrib><creatorcontrib>Stefanov, Ivaylo</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>del Valle, Luis Javier</creatorcontrib><creatorcontrib>Todorova, Katerina</creatorcontrib><creatorcontrib>Dimitrov, Petar</creatorcontrib><creatorcontrib>Hinojosa-Caballero, Dolores</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><title>Acta biomaterialia</title><description>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management.
Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
[Display omitted]</description><subject>Antibacterial activity</subject><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Biocompatibility</subject><subject>Chronic wounds</subject><subject>Crosslinking</subject><subject>Diabetes mellitus</subject><subject>Dressing materials</subject><subject>Enzymes</subject><subject>Exudation</subject><subject>Hyaluronic acid</subject><subject>Hydrogels</subject><subject>Infections</subject><subject>Keratinocytes</subject><subject>Lignin</subject><subject>Matrix metalloproteinase</subject><subject>Matrix metalloproteinases</subject><subject>Nano-enabled hydrogels</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Peroxidase</subject><subject>Polymers</subject><subject>Proteolysis</subject><subject>Pseudomonas aeruginosa</subject><subject>Self-assembling</subject><subject>Self-assembly</subject><subject>Shear stress</subject><subject>Shear thinning (liquids)</subject><subject>Silver</subject><subject>Silver-lignin nanoparticles</subject><subject>Thinning</subject><subject>Thiolated hyaluronic acid</subject><subject>Toxicity</subject><subject>Wound healing</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxQexYG39D1wE3LiZMR-TycxGkGJboehG1yEfN30ZMskzybzS_96U58qFq3vh_s7lcE7XvSd4IJhMn9ZBmap9GiimZMBiwBS_6i7JLOZe8Gl-3XYx0l7gibzp3payYsxmQufL7um7iumocvUmQG-zP0FEBYLrVSmw6eDjI_JxBVOVDoAOzzanRwgFHXM6eQtIoW0P1feueUjZq4DUsd2UOSCXMjKHnKI36Cnt0aKaQdUNYr3uLpwKBd79nVfdr9uvP2_u-4cfd99uvjz0ZiSs9lRPxPFZMMXEqEftFj5Z7QyejAWOtQECeiHGqZEaZ9nCFMdUsIUztRBi2VX38fy3Wfq9Q6ly88VACCpC2ouknNNlFoQsDf3wD7qmPcfmTtIJj7Pg40QbNZ4pk1MpGZw8Zr-p_CwJli9tyFWe25AvbUgsZGujyT6fZS06OHnIshgP0YD1uWUrbfL_f_AHVhKXpg</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Pérez-Rafael, Sílvia</creator><creator>Ivanova, Kristina</creator><creator>Stefanov, Ivaylo</creator><creator>Puiggalí, Jordi</creator><creator>del Valle, Luis Javier</creator><creator>Todorova, Katerina</creator><creator>Dimitrov, Petar</creator><creator>Hinojosa-Caballero, Dolores</creator><creator>Tzanov, Tzanko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20211015</creationdate><title>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</title><author>Pérez-Rafael, Sílvia ; Ivanova, Kristina ; Stefanov, Ivaylo ; Puiggalí, Jordi ; del Valle, Luis Javier ; Todorova, Katerina ; Dimitrov, Petar ; Hinojosa-Caballero, Dolores ; Tzanov, Tzanko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-2b61f5873a374b4bf956dbfc06cde50bce1eb91cfa42cfd393a50273953a911d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibacterial activity</topic><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Biocompatibility</topic><topic>Chronic wounds</topic><topic>Crosslinking</topic><topic>Diabetes mellitus</topic><topic>Dressing materials</topic><topic>Enzymes</topic><topic>Exudation</topic><topic>Hyaluronic acid</topic><topic>Hydrogels</topic><topic>Infections</topic><topic>Keratinocytes</topic><topic>Lignin</topic><topic>Matrix metalloproteinase</topic><topic>Matrix metalloproteinases</topic><topic>Nano-enabled hydrogels</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Peroxidase</topic><topic>Polymers</topic><topic>Proteolysis</topic><topic>Pseudomonas aeruginosa</topic><topic>Self-assembling</topic><topic>Self-assembly</topic><topic>Shear stress</topic><topic>Shear thinning (liquids)</topic><topic>Silver</topic><topic>Silver-lignin nanoparticles</topic><topic>Thinning</topic><topic>Thiolated hyaluronic acid</topic><topic>Toxicity</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Rafael, Sílvia</creatorcontrib><creatorcontrib>Ivanova, Kristina</creatorcontrib><creatorcontrib>Stefanov, Ivaylo</creatorcontrib><creatorcontrib>Puiggalí, Jordi</creatorcontrib><creatorcontrib>del Valle, Luis Javier</creatorcontrib><creatorcontrib>Todorova, Katerina</creatorcontrib><creatorcontrib>Dimitrov, Petar</creatorcontrib><creatorcontrib>Hinojosa-Caballero, Dolores</creatorcontrib><creatorcontrib>Tzanov, Tzanko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Rafael, Sílvia</au><au>Ivanova, Kristina</au><au>Stefanov, Ivaylo</au><au>Puiggalí, Jordi</au><au>del Valle, Luis Javier</au><au>Todorova, Katerina</au><au>Dimitrov, Petar</au><au>Hinojosa-Caballero, Dolores</au><au>Tzanov, Tzanko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment</atitle><jtitle>Acta biomaterialia</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>134</volume><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management.
Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2021.07.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-10, Vol.134, p.131-143 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2552987119 |
source | Elsevier ScienceDirect Journals |
subjects | Antibacterial activity Antioxidants Bacteria Bacterial diseases Bacterial infections Biocompatibility Chronic wounds Crosslinking Diabetes mellitus Dressing materials Enzymes Exudation Hyaluronic acid Hydrogels Infections Keratinocytes Lignin Matrix metalloproteinase Matrix metalloproteinases Nano-enabled hydrogels Nanocomposites Nanoparticles Peroxidase Polymers Proteolysis Pseudomonas aeruginosa Self-assembling Self-assembly Shear stress Shear thinning (liquids) Silver Silver-lignin nanoparticles Thinning Thiolated hyaluronic acid Toxicity Wound healing |
title | Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-driven%20self-assembling%20injectable%20hydrogels%20provide%20a%20multi-factorial%20approach%20for%20chronic%20wound%20treatment&rft.jtitle=Acta%20biomaterialia&rft.au=P%C3%A9rez-Rafael,%20S%C3%ADlvia&rft.date=2021-10-15&rft.volume=134&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.07.020&rft_dat=%3Cproquest_cross%3E2552987119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604875462&rft_id=info:pmid/&rft_els_id=S1742706121004517&rfr_iscdi=true |