A guide to the Michaelis–Menten equation: steady state and beyond

The modern definition of enzymology is synonymous with the Michaelis–Menten equation instituted by Leonor Michaelis and Maud Menten. Most textbooks, or chapters within, discussing enzymology start with the derivation of the equation under the assumption of rapid equilibrium (as done by Michaelis–Men...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2022-10, Vol.289 (20), p.6086-6098
1. Verfasser: Srinivasan, Bharath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6098
container_issue 20
container_start_page 6086
container_title The FEBS journal
container_volume 289
creator Srinivasan, Bharath
description The modern definition of enzymology is synonymous with the Michaelis–Menten equation instituted by Leonor Michaelis and Maud Menten. Most textbooks, or chapters within, discussing enzymology start with the derivation of the equation under the assumption of rapid equilibrium (as done by Michaelis–Menten) or steady state (as modified by Briggs and Haldane) conditions to highlight the importance of this equation as the bedrock on which interpretation of enzyme kinetic results is dependent. However, few textbooks or monographs take the effort of placing the equation within its right historical context and discuss the assumptions that have gone into its institution. This guide will dwell on these in substantial detail. Further, this guide will attempt to instil a sense of appreciation for the mathematical curve rectangular hyperbola, its unique attributes and how ubiquitous the curve is in biological systems. To conclude, this guide will discuss the limitations of the equation, and the method it embodies, and trace the journey of how investigators are attempting to move beyond the steady‐state approach and the Michaelis–Menten equation into full progress curve, pre–steady state and single‐turnover kinetic analysis to obtain greater insights into enzyme kinetics and catalysis. The article talks about the primacy of the Michaelis–Menten equation as a framework for the quantitative understanding of enzyme kinetics. It dwells upon the mathematical elegance of and the assumptions that went into framing the equation. Further, it traces the history of the equation and the growth of the field beyond it. The image shows an artistic rendering of the crowded interiors of a cell and the equation dictating how macromolecular interactions of catalytic nature happen.
doi_str_mv 10.1111/febs.16124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552984006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552984006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-776f7c74a10e245a00b7076ee70c41f9a61007c913d66abf66a506c611d506af3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pxU8Q8CJCZ9Lmz-Jtjk2FiQcVvIU0feM6unZrWqQ3v4Pf0E9iZsWDB3PIk8PvDS8PQqeUjGg4lw5SP6KCxmwPDahkccQEH-__vtnLITryfkVIwplSAzSd4Nc2zwA3FW6WgO9zuzRQ5P7z_eMeygZKDNvWNHlVXmHfgMm6EKYBbMoMp9BVZXaMDpwpPJz85BA9z2dP09to8XBzN50sIssSwSIphZNWMkMJxIwbQlJJpACQxDLqlBGUEGkVTTIhTOrCxYmwgtIspHHJEJ33_27qatuCb_Q69xaKwpRQtV7HnMdqzAgRgZ79oauqrcuwnY5lcDyhSgV10StbV97X4PSmztem7jQleten3vWpv_sMmPb4LS-g-0fq-ez6sZ_5AtWqdms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725553199</pqid></control><display><type>article</type><title>A guide to the Michaelis–Menten equation: steady state and beyond</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Srinivasan, Bharath</creator><creatorcontrib>Srinivasan, Bharath</creatorcontrib><description>The modern definition of enzymology is synonymous with the Michaelis–Menten equation instituted by Leonor Michaelis and Maud Menten. Most textbooks, or chapters within, discussing enzymology start with the derivation of the equation under the assumption of rapid equilibrium (as done by Michaelis–Menten) or steady state (as modified by Briggs and Haldane) conditions to highlight the importance of this equation as the bedrock on which interpretation of enzyme kinetic results is dependent. However, few textbooks or monographs take the effort of placing the equation within its right historical context and discuss the assumptions that have gone into its institution. This guide will dwell on these in substantial detail. Further, this guide will attempt to instil a sense of appreciation for the mathematical curve rectangular hyperbola, its unique attributes and how ubiquitous the curve is in biological systems. To conclude, this guide will discuss the limitations of the equation, and the method it embodies, and trace the journey of how investigators are attempting to move beyond the steady‐state approach and the Michaelis–Menten equation into full progress curve, pre–steady state and single‐turnover kinetic analysis to obtain greater insights into enzyme kinetics and catalysis. The article talks about the primacy of the Michaelis–Menten equation as a framework for the quantitative understanding of enzyme kinetics. It dwells upon the mathematical elegance of and the assumptions that went into framing the equation. Further, it traces the history of the equation and the growth of the field beyond it. The image shows an artistic rendering of the crowded interiors of a cell and the equation dictating how macromolecular interactions of catalytic nature happen.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.16124</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>asymptotes ; Bedrock ; Catalysis ; Enzyme kinetics ; Enzymology ; Hyperbolas ; initial velocity ; Michaelis–Menten ; quasi‐steady state ; rapid equilibrium ; Reaction kinetics ; rectangular hyperbola ; Steady state ; Textbooks</subject><ispartof>The FEBS journal, 2022-10, Vol.289 (20), p.6086-6098</ispartof><rights>2021 Federation of European Biochemical Societies.</rights><rights>Copyright © 2022 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4364-776f7c74a10e245a00b7076ee70c41f9a61007c913d66abf66a506c611d506af3</citedby><cites>FETCH-LOGICAL-c4364-776f7c74a10e245a00b7076ee70c41f9a61007c913d66abf66a506c611d506af3</cites><orcidid>0000-0003-0561-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.16124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.16124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids></links><search><creatorcontrib>Srinivasan, Bharath</creatorcontrib><title>A guide to the Michaelis–Menten equation: steady state and beyond</title><title>The FEBS journal</title><description>The modern definition of enzymology is synonymous with the Michaelis–Menten equation instituted by Leonor Michaelis and Maud Menten. Most textbooks, or chapters within, discussing enzymology start with the derivation of the equation under the assumption of rapid equilibrium (as done by Michaelis–Menten) or steady state (as modified by Briggs and Haldane) conditions to highlight the importance of this equation as the bedrock on which interpretation of enzyme kinetic results is dependent. However, few textbooks or monographs take the effort of placing the equation within its right historical context and discuss the assumptions that have gone into its institution. This guide will dwell on these in substantial detail. Further, this guide will attempt to instil a sense of appreciation for the mathematical curve rectangular hyperbola, its unique attributes and how ubiquitous the curve is in biological systems. To conclude, this guide will discuss the limitations of the equation, and the method it embodies, and trace the journey of how investigators are attempting to move beyond the steady‐state approach and the Michaelis–Menten equation into full progress curve, pre–steady state and single‐turnover kinetic analysis to obtain greater insights into enzyme kinetics and catalysis. The article talks about the primacy of the Michaelis–Menten equation as a framework for the quantitative understanding of enzyme kinetics. It dwells upon the mathematical elegance of and the assumptions that went into framing the equation. Further, it traces the history of the equation and the growth of the field beyond it. The image shows an artistic rendering of the crowded interiors of a cell and the equation dictating how macromolecular interactions of catalytic nature happen.</description><subject>asymptotes</subject><subject>Bedrock</subject><subject>Catalysis</subject><subject>Enzyme kinetics</subject><subject>Enzymology</subject><subject>Hyperbolas</subject><subject>initial velocity</subject><subject>Michaelis–Menten</subject><subject>quasi‐steady state</subject><subject>rapid equilibrium</subject><subject>Reaction kinetics</subject><subject>rectangular hyperbola</subject><subject>Steady state</subject><subject>Textbooks</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pxU8Q8CJCZ9Lmz-Jtjk2FiQcVvIU0feM6unZrWqQ3v4Pf0E9iZsWDB3PIk8PvDS8PQqeUjGg4lw5SP6KCxmwPDahkccQEH-__vtnLITryfkVIwplSAzSd4Nc2zwA3FW6WgO9zuzRQ5P7z_eMeygZKDNvWNHlVXmHfgMm6EKYBbMoMp9BVZXaMDpwpPJz85BA9z2dP09to8XBzN50sIssSwSIphZNWMkMJxIwbQlJJpACQxDLqlBGUEGkVTTIhTOrCxYmwgtIspHHJEJ33_27qatuCb_Q69xaKwpRQtV7HnMdqzAgRgZ79oauqrcuwnY5lcDyhSgV10StbV97X4PSmztem7jQleten3vWpv_sMmPb4LS-g-0fq-ez6sZ_5AtWqdms</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Srinivasan, Bharath</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0561-213X</orcidid></search><sort><creationdate>202210</creationdate><title>A guide to the Michaelis–Menten equation: steady state and beyond</title><author>Srinivasan, Bharath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-776f7c74a10e245a00b7076ee70c41f9a61007c913d66abf66a506c611d506af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymptotes</topic><topic>Bedrock</topic><topic>Catalysis</topic><topic>Enzyme kinetics</topic><topic>Enzymology</topic><topic>Hyperbolas</topic><topic>initial velocity</topic><topic>Michaelis–Menten</topic><topic>quasi‐steady state</topic><topic>rapid equilibrium</topic><topic>Reaction kinetics</topic><topic>rectangular hyperbola</topic><topic>Steady state</topic><topic>Textbooks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Bharath</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Bharath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A guide to the Michaelis–Menten equation: steady state and beyond</atitle><jtitle>The FEBS journal</jtitle><date>2022-10</date><risdate>2022</risdate><volume>289</volume><issue>20</issue><spage>6086</spage><epage>6098</epage><pages>6086-6098</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The modern definition of enzymology is synonymous with the Michaelis–Menten equation instituted by Leonor Michaelis and Maud Menten. Most textbooks, or chapters within, discussing enzymology start with the derivation of the equation under the assumption of rapid equilibrium (as done by Michaelis–Menten) or steady state (as modified by Briggs and Haldane) conditions to highlight the importance of this equation as the bedrock on which interpretation of enzyme kinetic results is dependent. However, few textbooks or monographs take the effort of placing the equation within its right historical context and discuss the assumptions that have gone into its institution. This guide will dwell on these in substantial detail. Further, this guide will attempt to instil a sense of appreciation for the mathematical curve rectangular hyperbola, its unique attributes and how ubiquitous the curve is in biological systems. To conclude, this guide will discuss the limitations of the equation, and the method it embodies, and trace the journey of how investigators are attempting to move beyond the steady‐state approach and the Michaelis–Menten equation into full progress curve, pre–steady state and single‐turnover kinetic analysis to obtain greater insights into enzyme kinetics and catalysis. The article talks about the primacy of the Michaelis–Menten equation as a framework for the quantitative understanding of enzyme kinetics. It dwells upon the mathematical elegance of and the assumptions that went into framing the equation. Further, it traces the history of the equation and the growth of the field beyond it. The image shows an artistic rendering of the crowded interiors of a cell and the equation dictating how macromolecular interactions of catalytic nature happen.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/febs.16124</doi><tpages>6098</tpages><orcidid>https://orcid.org/0000-0003-0561-213X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2022-10, Vol.289 (20), p.6086-6098
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2552984006
source Wiley Free Content; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects asymptotes
Bedrock
Catalysis
Enzyme kinetics
Enzymology
Hyperbolas
initial velocity
Michaelis–Menten
quasi‐steady state
rapid equilibrium
Reaction kinetics
rectangular hyperbola
Steady state
Textbooks
title A guide to the Michaelis–Menten equation: steady state and beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20guide%20to%20the%20Michaelis%E2%80%93Menten%20equation:%20steady%20state%20and%20beyond&rft.jtitle=The%20FEBS%20journal&rft.au=Srinivasan,%20Bharath&rft.date=2022-10&rft.volume=289&rft.issue=20&rft.spage=6086&rft.epage=6098&rft.pages=6086-6098&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.16124&rft_dat=%3Cproquest_cross%3E2552984006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725553199&rft_id=info:pmid/&rfr_iscdi=true