LINADMIX: evaluating the effect of ancient admixture events on modern populations
Abstract Motivation The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coeff...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2021-12, Vol.37 (24), p.4744-4755 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4755 |
---|---|
container_issue | 24 |
container_start_page | 4744 |
container_title | Bioinformatics |
container_volume | 37 |
creator | Agranat-Tamir, Lily Waldman, Shamam Rosen, Naomi Yakir, Benjamin Carmi, Shai Carmel, Liran |
description | Abstract
Motivation
The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data.
Results
We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space. LINADMIX estimates the mixing coefficients and their standard errors, and computes a P-value for testing the model fit to the data. We quantified the performance of LINADMIX using an extensive set of simulated studies. We show that LINADMIX can accurately estimate admixture coefficients, and is robust to factors such as population size, genetic drift, proportion of missing data and various types of model misspecification.
Availability and implementation
LINADMIX is available as a python code at https://github.com/swidler/linadmix.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552980297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab531</oup_id><sourcerecordid>2552980297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-2dfc346eb16402476a674f8c559117707da96c95e9173c756cfb2a199d030f8b3</originalsourceid><addsrcrecordid>eNqNkE1LxDAURYMojo7-hSFLN3Xyncbd4OfAqAgK7kqaJlppk9qkg_57KzMK7ly9PHLufXAAmGF0ipGi87IOtXehb3WqTZyXSZec4h1wgJlAGUFc7Y5vKmTGckQn4DDGN4Q4ZoztgwllRCKR8wPwsFreLS5ul89n0K51M4x1_gWmVwutc9YkGBzU3tTWJ6irtv5IQz_-rcc9wuBhGyrbe9iFbmjGbPDxCOw53UR7vJ1T8HR1-Xh-k63ur5fni1VmKEIpI5UzlAlbYsEQYVJoIZnLDecKYymRrLQSRnGrsKRGcmFcSTRWqkIUubykU3Cy6e368D7YmIq2jsY2jfY2DLEgnBOVI6LkiIoNavoQY29d0fV1q_vPAqPiW2fxV2ex1TkGZ9sbQ9na6jf2428E8AYIQ_ff0i8Z24fd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552980297</pqid></control><display><type>article</type><title>LINADMIX: evaluating the effect of ancient admixture events on modern populations</title><source>Oxford Journals Open Access Collection</source><creator>Agranat-Tamir, Lily ; Waldman, Shamam ; Rosen, Naomi ; Yakir, Benjamin ; Carmi, Shai ; Carmel, Liran</creator><creatorcontrib>Agranat-Tamir, Lily ; Waldman, Shamam ; Rosen, Naomi ; Yakir, Benjamin ; Carmi, Shai ; Carmel, Liran</creatorcontrib><description>Abstract
Motivation
The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data.
Results
We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space. LINADMIX estimates the mixing coefficients and their standard errors, and computes a P-value for testing the model fit to the data. We quantified the performance of LINADMIX using an extensive set of simulated studies. We show that LINADMIX can accurately estimate admixture coefficients, and is robust to factors such as population size, genetic drift, proportion of missing data and various types of model misspecification.
Availability and implementation
LINADMIX is available as a python code at https://github.com/swidler/linadmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab531</identifier><identifier>PMID: 34270685</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Genotype ; Humans ; Software</subject><ispartof>Bioinformatics, 2021-12, Vol.37 (24), p.4744-4755</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-2dfc346eb16402476a674f8c559117707da96c95e9173c756cfb2a199d030f8b3</cites><orcidid>0000-0003-0225-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab531$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34270685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agranat-Tamir, Lily</creatorcontrib><creatorcontrib>Waldman, Shamam</creatorcontrib><creatorcontrib>Rosen, Naomi</creatorcontrib><creatorcontrib>Yakir, Benjamin</creatorcontrib><creatorcontrib>Carmi, Shai</creatorcontrib><creatorcontrib>Carmel, Liran</creatorcontrib><title>LINADMIX: evaluating the effect of ancient admixture events on modern populations</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data.
Results
We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space. LINADMIX estimates the mixing coefficients and their standard errors, and computes a P-value for testing the model fit to the data. We quantified the performance of LINADMIX using an extensive set of simulated studies. We show that LINADMIX can accurately estimate admixture coefficients, and is robust to factors such as population size, genetic drift, proportion of missing data and various types of model misspecification.
Availability and implementation
LINADMIX is available as a python code at https://github.com/swidler/linadmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Genotype</subject><subject>Humans</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAURYMojo7-hSFLN3Xyncbd4OfAqAgK7kqaJlppk9qkg_57KzMK7ly9PHLufXAAmGF0ipGi87IOtXehb3WqTZyXSZec4h1wgJlAGUFc7Y5vKmTGckQn4DDGN4Q4ZoztgwllRCKR8wPwsFreLS5ul89n0K51M4x1_gWmVwutc9YkGBzU3tTWJ6irtv5IQz_-rcc9wuBhGyrbe9iFbmjGbPDxCOw53UR7vJ1T8HR1-Xh-k63ur5fni1VmKEIpI5UzlAlbYsEQYVJoIZnLDecKYymRrLQSRnGrsKRGcmFcSTRWqkIUubykU3Cy6e368D7YmIq2jsY2jfY2DLEgnBOVI6LkiIoNavoQY29d0fV1q_vPAqPiW2fxV2ex1TkGZ9sbQ9na6jf2428E8AYIQ_ff0i8Z24fd</recordid><startdate>20211211</startdate><enddate>20211211</enddate><creator>Agranat-Tamir, Lily</creator><creator>Waldman, Shamam</creator><creator>Rosen, Naomi</creator><creator>Yakir, Benjamin</creator><creator>Carmi, Shai</creator><creator>Carmel, Liran</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0225-8550</orcidid></search><sort><creationdate>20211211</creationdate><title>LINADMIX: evaluating the effect of ancient admixture events on modern populations</title><author>Agranat-Tamir, Lily ; Waldman, Shamam ; Rosen, Naomi ; Yakir, Benjamin ; Carmi, Shai ; Carmel, Liran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-2dfc346eb16402476a674f8c559117707da96c95e9173c756cfb2a199d030f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Genotype</topic><topic>Humans</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agranat-Tamir, Lily</creatorcontrib><creatorcontrib>Waldman, Shamam</creatorcontrib><creatorcontrib>Rosen, Naomi</creatorcontrib><creatorcontrib>Yakir, Benjamin</creatorcontrib><creatorcontrib>Carmi, Shai</creatorcontrib><creatorcontrib>Carmel, Liran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agranat-Tamir, Lily</au><au>Waldman, Shamam</au><au>Rosen, Naomi</au><au>Yakir, Benjamin</au><au>Carmi, Shai</au><au>Carmel, Liran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LINADMIX: evaluating the effect of ancient admixture events on modern populations</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2021-12-11</date><risdate>2021</risdate><volume>37</volume><issue>24</issue><spage>4744</spage><epage>4755</epage><pages>4744-4755</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data.
Results
We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space. LINADMIX estimates the mixing coefficients and their standard errors, and computes a P-value for testing the model fit to the data. We quantified the performance of LINADMIX using an extensive set of simulated studies. We show that LINADMIX can accurately estimate admixture coefficients, and is robust to factors such as population size, genetic drift, proportion of missing data and various types of model misspecification.
Availability and implementation
LINADMIX is available as a python code at https://github.com/swidler/linadmix.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34270685</pmid><doi>10.1093/bioinformatics/btab531</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0225-8550</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2021-12, Vol.37 (24), p.4744-4755 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2552980297 |
source | Oxford Journals Open Access Collection |
subjects | Genotype Humans Software |
title | LINADMIX: evaluating the effect of ancient admixture events on modern populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LINADMIX:%20evaluating%20the%20effect%20of%20ancient%20admixture%20events%20on%20modern%20populations&rft.jtitle=Bioinformatics&rft.au=Agranat-Tamir,%20Lily&rft.date=2021-12-11&rft.volume=37&rft.issue=24&rft.spage=4744&rft.epage=4755&rft.pages=4744-4755&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab531&rft_dat=%3Cproquest_TOX%3E2552980297%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552980297&rft_id=info:pmid/34270685&rft_oup_id=10.1093/bioinformatics/btab531&rfr_iscdi=true |