ICP registration with DCA descriptor for 3D point clouds

Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-06, Vol.29 (13), p.20423-20439
Hauptverfasser: He, Ying, Yang, Jun, Hou, Xingming, Pang, Shiyan, Chen, Jia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20439
container_issue 13
container_start_page 20423
container_title Optics express
container_volume 29
creator He, Ying
Yang, Jun
Hou, Xingming
Pang, Shiyan
Chen, Jia
description Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.
doi_str_mv 10.1364/OE.425622
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552979844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552979844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-b6112212cc239464a37588f418c9ea68da86a58394096ea2fbedd48dbed6d2c13</originalsourceid><addsrcrecordid>eNpNkLFOwzAYhC0EEqUw8AYeYUix_ziOPVZpC5UqlQFmy7UdMErjYLtCvD1BYWA4fSfd6YZD6JaSBS05e9ivFwwqDnCGZpRIVjAi6vN__hJdpfRBCGW1rGdIbJtnHN2bTznq7EOPv3x-x6tmia1LJvohh4jbUeUKD8H3GZsunGy6Rhet7pK7-eMcvW7WL81Tsds_bpvlrjAAdS4OnFIACsZAKRlnuqwrIVpGhZFOc2G14LoSY0Ykdxrag7OWCTuCWzC0nKO7aXeI4fPkUlZHn4zrOt27cEoKqgpkLQVjY_V-qpoYUoquVUP0Rx2_FSXq9x21X6vpnfIHFClVQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552979844</pqid></control><display><type>article</type><title>ICP registration with DCA descriptor for 3D point clouds</title><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>He, Ying ; Yang, Jun ; Hou, Xingming ; Pang, Shiyan ; Chen, Jia</creator><creatorcontrib>He, Ying ; Yang, Jun ; Hou, Xingming ; Pang, Shiyan ; Chen, Jia</creatorcontrib><description>Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.425622</identifier><language>eng</language><ispartof>Optics express, 2021-06, Vol.29 (13), p.20423-20439</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-b6112212cc239464a37588f418c9ea68da86a58394096ea2fbedd48dbed6d2c13</citedby><cites>FETCH-LOGICAL-c227t-b6112212cc239464a37588f418c9ea68da86a58394096ea2fbedd48dbed6d2c13</cites><orcidid>0000-0002-8239-4757 ; 0000-0002-8852-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Hou, Xingming</creatorcontrib><creatorcontrib>Pang, Shiyan</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><title>ICP registration with DCA descriptor for 3D point clouds</title><title>Optics express</title><description>Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAYhC0EEqUw8AYeYUix_ziOPVZpC5UqlQFmy7UdMErjYLtCvD1BYWA4fSfd6YZD6JaSBS05e9ivFwwqDnCGZpRIVjAi6vN__hJdpfRBCGW1rGdIbJtnHN2bTznq7EOPv3x-x6tmia1LJvohh4jbUeUKD8H3GZsunGy6Rhet7pK7-eMcvW7WL81Tsds_bpvlrjAAdS4OnFIACsZAKRlnuqwrIVpGhZFOc2G14LoSY0Ykdxrag7OWCTuCWzC0nKO7aXeI4fPkUlZHn4zrOt27cEoKqgpkLQVjY_V-qpoYUoquVUP0Rx2_FSXq9x21X6vpnfIHFClVQQ</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>He, Ying</creator><creator>Yang, Jun</creator><creator>Hou, Xingming</creator><creator>Pang, Shiyan</creator><creator>Chen, Jia</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8239-4757</orcidid><orcidid>https://orcid.org/0000-0002-8852-9894</orcidid></search><sort><creationdate>20210621</creationdate><title>ICP registration with DCA descriptor for 3D point clouds</title><author>He, Ying ; Yang, Jun ; Hou, Xingming ; Pang, Shiyan ; Chen, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-b6112212cc239464a37588f418c9ea68da86a58394096ea2fbedd48dbed6d2c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Hou, Xingming</creatorcontrib><creatorcontrib>Pang, Shiyan</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ying</au><au>Yang, Jun</au><au>Hou, Xingming</au><au>Pang, Shiyan</au><au>Chen, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICP registration with DCA descriptor for 3D point clouds</atitle><jtitle>Optics express</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>29</volume><issue>13</issue><spage>20423</spage><epage>20439</epage><pages>20423-20439</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Widely used in three-dimensional (3D) modeling, reverse engineering and other fields, point cloud registration aims to find the translation and rotation matrix between two point clouds obtained from different perspectives, and thus correctly match the two point clouds. As the most common point cloud registration method, ICP algorithm, however, requires a good initial value, not too large transformation between the two point clouds, and also not too much occlusion; Otherwise, the iteration would fall into a local minimum. To solve this problem, this paper proposes an ICP registration algorithm based on the local features of point clouds. With this algorithm, a robust and efficient 3D local feature descriptor (density, curvature and normal angle, DCA) is firstly designed by combining the density, curvature, and normal information of the point clouds, then based on the feature description, the correspondence between the point clouds and also the initial registration result are found, and finally, the aforementioned result is used as the initial value of ICP to achieve fine tuning of the registration result. The experimental results on public data sets show that the improved ICP algorithm boosts good registration accuracy and robustness, and a fast running speed as well.</abstract><doi>10.1364/OE.425622</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8239-4757</orcidid><orcidid>https://orcid.org/0000-0002-8852-9894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-06, Vol.29 (13), p.20423-20439
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2552979844
source Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
title ICP registration with DCA descriptor for 3D point clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICP%20registration%20with%20DCA%20descriptor%20for%203D%20point%20clouds&rft.jtitle=Optics%20express&rft.au=He,%20Ying&rft.date=2021-06-21&rft.volume=29&rft.issue=13&rft.spage=20423&rft.epage=20439&rft.pages=20423-20439&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.425622&rft_dat=%3Cproquest_cross%3E2552979844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552979844&rft_id=info:pmid/&rfr_iscdi=true