Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast
Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contras...
Gespeichert in:
Veröffentlicht in: | Journal of medical imaging (Bellingham, Wash.) Wash.), 2021-09, Vol.8 (5), p.052108-052108 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 052108 |
---|---|
container_issue | 5 |
container_start_page | 052108 |
container_title | Journal of medical imaging (Bellingham, Wash.) |
container_volume | 8 |
creator | Wan, Sarina Arhatari, Benedicta D Nesterets, Yakov I Mayo, Sheridan C Thompson, Darren Fox, Jane Kumar, Beena Prodanovic, Zdenka Hausermann, Daniel Maksimenko, Anton Hall, Christopher Dimmock, Matthew Pavlov, Konstantin M Lockie, Darren Rickard, Mary Gadomkar, Ziba Aminzadeh, Alaleh Vafa, Elham Peele, Andrew Quiney, Harry M Lewis, Sarah Gureyev, Timur E Brennan, Patrick C Taba, Seyedamir Tavakoli |
description | Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging.
Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality.
Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUCVGC ) of 0.754 (p = 0.009). This was followed by 32 keV (AUCVGC = 0.731, p ≤ 0.001), 34 keV (AUCVGC = 0.723, p ≤ 0.001), and 28 keV (AUCVGC = 0.654, p = 0.015).
Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities. |
doi_str_mv | 10.1117/1.JMI.8.5.052108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2552979689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552979689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1134e688430bb66f0854386a2d40adad9b43167deb2f1b9573a8a912245520f93</originalsourceid><addsrcrecordid>eNp1UcFunDAQtaJWSZTmnqOPuUBtY8BcIlWrtE21VS_J2RpgYB0BZm1TlUu_PUa7itRDTzMav3lvnh8hd5ylnPPyM09__HxKVZqnLBecqQtyLTJRJTLj7MN7z8QVufX-lTHG-QaUl-Qqk6JQUopr8vex67AJ1Hb0T-JgpTih61dqJxoOSB20xg62Nw0M1IzQIz0uMJiwUjPR2dkZegjGTkkNHls6H2JJGjsFBz7Qxo7zEuI82NH2DubDuiltzLXDiPhEPnYweLw91xvy8vXxefc92f_69rT7sk-arJAh4TyTWCgV7dR1UXRM5TJTBYhWMmihrepouihbrEXH6yovM1BQcSFkngvWVdkNeTjxzks9YtvgduCgZxc9uVVbMPrfl8kcdG9_ayXKeEEZCe7PBM4eF_RBj8Y3OAwwoV28FlGoKqtCbVrsBG2c9d5h9y7Dmd6S01zH5LTSuT4lF1eS04qfDepXu7gp_sb_8W_dR5qM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552979689</pqid></control><display><type>article</type><title>Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wan, Sarina ; Arhatari, Benedicta D ; Nesterets, Yakov I ; Mayo, Sheridan C ; Thompson, Darren ; Fox, Jane ; Kumar, Beena ; Prodanovic, Zdenka ; Hausermann, Daniel ; Maksimenko, Anton ; Hall, Christopher ; Dimmock, Matthew ; Pavlov, Konstantin M ; Lockie, Darren ; Rickard, Mary ; Gadomkar, Ziba ; Aminzadeh, Alaleh ; Vafa, Elham ; Peele, Andrew ; Quiney, Harry M ; Lewis, Sarah ; Gureyev, Timur E ; Brennan, Patrick C ; Taba, Seyedamir Tavakoli</creator><creatorcontrib>Wan, Sarina ; Arhatari, Benedicta D ; Nesterets, Yakov I ; Mayo, Sheridan C ; Thompson, Darren ; Fox, Jane ; Kumar, Beena ; Prodanovic, Zdenka ; Hausermann, Daniel ; Maksimenko, Anton ; Hall, Christopher ; Dimmock, Matthew ; Pavlov, Konstantin M ; Lockie, Darren ; Rickard, Mary ; Gadomkar, Ziba ; Aminzadeh, Alaleh ; Vafa, Elham ; Peele, Andrew ; Quiney, Harry M ; Lewis, Sarah ; Gureyev, Timur E ; Brennan, Patrick C ; Taba, Seyedamir Tavakoli</creatorcontrib><description>Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging.
Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality.
Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUCVGC ) of 0.754 (p = 0.009). This was followed by 32 keV (AUCVGC = 0.731, p ≤ 0.001), 34 keV (AUCVGC = 0.723, p ≤ 0.001), and 28 keV (AUCVGC = 0.654, p = 0.015).
Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.</description><identifier>ISSN: 2329-4302</identifier><identifier>EISSN: 2329-4310</identifier><identifier>DOI: 10.1117/1.JMI.8.5.052108</identifier><identifier>PMID: 34268442</identifier><language>eng</language><publisher>Society of Photo-Optical Instrumentation Engineers</publisher><subject>Special Section Celebrating X-Ray Computed Tomography at 50</subject><ispartof>Journal of medical imaging (Bellingham, Wash.), 2021-09, Vol.8 (5), p.052108-052108</ispartof><rights>2021 Society of Photo-Optical Instrumentation Engineers (SPIE)</rights><rights>2021 Society of Photo-Optical Instrumentation Engineers (SPIE) 2021 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2737-7946 ; 0000-0002-1935-6651 ; 0000-0002-0827-7261 ; 0000-0003-2082-6662 ; 0000-0002-1756-4406 ; 0000-0001-8691-7677 ; 0000-0002-5024-1772 ; 0000-0001-8611-7258 ; 0000-0001-8759-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273647/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273647/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Wan, Sarina</creatorcontrib><creatorcontrib>Arhatari, Benedicta D</creatorcontrib><creatorcontrib>Nesterets, Yakov I</creatorcontrib><creatorcontrib>Mayo, Sheridan C</creatorcontrib><creatorcontrib>Thompson, Darren</creatorcontrib><creatorcontrib>Fox, Jane</creatorcontrib><creatorcontrib>Kumar, Beena</creatorcontrib><creatorcontrib>Prodanovic, Zdenka</creatorcontrib><creatorcontrib>Hausermann, Daniel</creatorcontrib><creatorcontrib>Maksimenko, Anton</creatorcontrib><creatorcontrib>Hall, Christopher</creatorcontrib><creatorcontrib>Dimmock, Matthew</creatorcontrib><creatorcontrib>Pavlov, Konstantin M</creatorcontrib><creatorcontrib>Lockie, Darren</creatorcontrib><creatorcontrib>Rickard, Mary</creatorcontrib><creatorcontrib>Gadomkar, Ziba</creatorcontrib><creatorcontrib>Aminzadeh, Alaleh</creatorcontrib><creatorcontrib>Vafa, Elham</creatorcontrib><creatorcontrib>Peele, Andrew</creatorcontrib><creatorcontrib>Quiney, Harry M</creatorcontrib><creatorcontrib>Lewis, Sarah</creatorcontrib><creatorcontrib>Gureyev, Timur E</creatorcontrib><creatorcontrib>Brennan, Patrick C</creatorcontrib><creatorcontrib>Taba, Seyedamir Tavakoli</creatorcontrib><title>Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast</title><title>Journal of medical imaging (Bellingham, Wash.)</title><addtitle>J. Med. Imag</addtitle><description>Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging.
Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality.
Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUCVGC ) of 0.754 (p = 0.009). This was followed by 32 keV (AUCVGC = 0.731, p ≤ 0.001), 34 keV (AUCVGC = 0.723, p ≤ 0.001), and 28 keV (AUCVGC = 0.654, p = 0.015).
Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.</description><subject>Special Section Celebrating X-Ray Computed Tomography at 50</subject><issn>2329-4302</issn><issn>2329-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UcFunDAQtaJWSZTmnqOPuUBtY8BcIlWrtE21VS_J2RpgYB0BZm1TlUu_PUa7itRDTzMav3lvnh8hd5ylnPPyM09__HxKVZqnLBecqQtyLTJRJTLj7MN7z8QVufX-lTHG-QaUl-Qqk6JQUopr8vex67AJ1Hb0T-JgpTih61dqJxoOSB20xg62Nw0M1IzQIz0uMJiwUjPR2dkZegjGTkkNHls6H2JJGjsFBz7Qxo7zEuI82NH2DubDuiltzLXDiPhEPnYweLw91xvy8vXxefc92f_69rT7sk-arJAh4TyTWCgV7dR1UXRM5TJTBYhWMmihrepouihbrEXH6yovM1BQcSFkngvWVdkNeTjxzks9YtvgduCgZxc9uVVbMPrfl8kcdG9_ayXKeEEZCe7PBM4eF_RBj8Y3OAwwoV28FlGoKqtCbVrsBG2c9d5h9y7Dmd6S01zH5LTSuT4lF1eS04qfDepXu7gp_sb_8W_dR5qM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wan, Sarina</creator><creator>Arhatari, Benedicta D</creator><creator>Nesterets, Yakov I</creator><creator>Mayo, Sheridan C</creator><creator>Thompson, Darren</creator><creator>Fox, Jane</creator><creator>Kumar, Beena</creator><creator>Prodanovic, Zdenka</creator><creator>Hausermann, Daniel</creator><creator>Maksimenko, Anton</creator><creator>Hall, Christopher</creator><creator>Dimmock, Matthew</creator><creator>Pavlov, Konstantin M</creator><creator>Lockie, Darren</creator><creator>Rickard, Mary</creator><creator>Gadomkar, Ziba</creator><creator>Aminzadeh, Alaleh</creator><creator>Vafa, Elham</creator><creator>Peele, Andrew</creator><creator>Quiney, Harry M</creator><creator>Lewis, Sarah</creator><creator>Gureyev, Timur E</creator><creator>Brennan, Patrick C</creator><creator>Taba, Seyedamir Tavakoli</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2737-7946</orcidid><orcidid>https://orcid.org/0000-0002-1935-6651</orcidid><orcidid>https://orcid.org/0000-0002-0827-7261</orcidid><orcidid>https://orcid.org/0000-0003-2082-6662</orcidid><orcidid>https://orcid.org/0000-0002-1756-4406</orcidid><orcidid>https://orcid.org/0000-0001-8691-7677</orcidid><orcidid>https://orcid.org/0000-0002-5024-1772</orcidid><orcidid>https://orcid.org/0000-0001-8611-7258</orcidid><orcidid>https://orcid.org/0000-0001-8759-0063</orcidid></search><sort><creationdate>20210901</creationdate><title>Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast</title><author>Wan, Sarina ; Arhatari, Benedicta D ; Nesterets, Yakov I ; Mayo, Sheridan C ; Thompson, Darren ; Fox, Jane ; Kumar, Beena ; Prodanovic, Zdenka ; Hausermann, Daniel ; Maksimenko, Anton ; Hall, Christopher ; Dimmock, Matthew ; Pavlov, Konstantin M ; Lockie, Darren ; Rickard, Mary ; Gadomkar, Ziba ; Aminzadeh, Alaleh ; Vafa, Elham ; Peele, Andrew ; Quiney, Harry M ; Lewis, Sarah ; Gureyev, Timur E ; Brennan, Patrick C ; Taba, Seyedamir Tavakoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1134e688430bb66f0854386a2d40adad9b43167deb2f1b9573a8a912245520f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Special Section Celebrating X-Ray Computed Tomography at 50</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Sarina</creatorcontrib><creatorcontrib>Arhatari, Benedicta D</creatorcontrib><creatorcontrib>Nesterets, Yakov I</creatorcontrib><creatorcontrib>Mayo, Sheridan C</creatorcontrib><creatorcontrib>Thompson, Darren</creatorcontrib><creatorcontrib>Fox, Jane</creatorcontrib><creatorcontrib>Kumar, Beena</creatorcontrib><creatorcontrib>Prodanovic, Zdenka</creatorcontrib><creatorcontrib>Hausermann, Daniel</creatorcontrib><creatorcontrib>Maksimenko, Anton</creatorcontrib><creatorcontrib>Hall, Christopher</creatorcontrib><creatorcontrib>Dimmock, Matthew</creatorcontrib><creatorcontrib>Pavlov, Konstantin M</creatorcontrib><creatorcontrib>Lockie, Darren</creatorcontrib><creatorcontrib>Rickard, Mary</creatorcontrib><creatorcontrib>Gadomkar, Ziba</creatorcontrib><creatorcontrib>Aminzadeh, Alaleh</creatorcontrib><creatorcontrib>Vafa, Elham</creatorcontrib><creatorcontrib>Peele, Andrew</creatorcontrib><creatorcontrib>Quiney, Harry M</creatorcontrib><creatorcontrib>Lewis, Sarah</creatorcontrib><creatorcontrib>Gureyev, Timur E</creatorcontrib><creatorcontrib>Brennan, Patrick C</creatorcontrib><creatorcontrib>Taba, Seyedamir Tavakoli</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Sarina</au><au>Arhatari, Benedicta D</au><au>Nesterets, Yakov I</au><au>Mayo, Sheridan C</au><au>Thompson, Darren</au><au>Fox, Jane</au><au>Kumar, Beena</au><au>Prodanovic, Zdenka</au><au>Hausermann, Daniel</au><au>Maksimenko, Anton</au><au>Hall, Christopher</au><au>Dimmock, Matthew</au><au>Pavlov, Konstantin M</au><au>Lockie, Darren</au><au>Rickard, Mary</au><au>Gadomkar, Ziba</au><au>Aminzadeh, Alaleh</au><au>Vafa, Elham</au><au>Peele, Andrew</au><au>Quiney, Harry M</au><au>Lewis, Sarah</au><au>Gureyev, Timur E</au><au>Brennan, Patrick C</au><au>Taba, Seyedamir Tavakoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast</atitle><jtitle>Journal of medical imaging (Bellingham, Wash.)</jtitle><addtitle>J. Med. Imag</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>5</issue><spage>052108</spage><epage>052108</epage><pages>052108-052108</pages><issn>2329-4302</issn><eissn>2329-4310</eissn><abstract>Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging.
Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality.
Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUCVGC ) of 0.754 (p = 0.009). This was followed by 32 keV (AUCVGC = 0.731, p ≤ 0.001), 34 keV (AUCVGC = 0.723, p ≤ 0.001), and 28 keV (AUCVGC = 0.654, p = 0.015).
Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.</abstract><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>34268442</pmid><doi>10.1117/1.JMI.8.5.052108</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2737-7946</orcidid><orcidid>https://orcid.org/0000-0002-1935-6651</orcidid><orcidid>https://orcid.org/0000-0002-0827-7261</orcidid><orcidid>https://orcid.org/0000-0003-2082-6662</orcidid><orcidid>https://orcid.org/0000-0002-1756-4406</orcidid><orcidid>https://orcid.org/0000-0001-8691-7677</orcidid><orcidid>https://orcid.org/0000-0002-5024-1772</orcidid><orcidid>https://orcid.org/0000-0001-8611-7258</orcidid><orcidid>https://orcid.org/0000-0001-8759-0063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-4302 |
ispartof | Journal of medical imaging (Bellingham, Wash.), 2021-09, Vol.8 (5), p.052108-052108 |
issn | 2329-4302 2329-4310 |
language | eng |
recordid | cdi_proquest_miscellaneous_2552979689 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Special Section Celebrating X-Ray Computed Tomography at 50 |
title | Effect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20x-ray%20energy%20on%20the%20radiological%20image%20quality%20in%20propagation-based%20phase-contrast%20computed%20tomography%20of%20the%20breast&rft.jtitle=Journal%20of%20medical%20imaging%20(Bellingham,%20Wash.)&rft.au=Wan,%20Sarina&rft.date=2021-09-01&rft.volume=8&rft.issue=5&rft.spage=052108&rft.epage=052108&rft.pages=052108-052108&rft.issn=2329-4302&rft.eissn=2329-4310&rft_id=info:doi/10.1117/1.JMI.8.5.052108&rft_dat=%3Cproquest_pubme%3E2552979689%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552979689&rft_id=info:pmid/34268442&rfr_iscdi=true |