Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis
Purpose To evaluate the effect of diagnostic coding system transition on the identification of common conditions recorded in Taiwan's national claims database. Methods Using the National Health Insurance Research Database, we estimated the 3‐month prevalence of recorded diagnosis of 32 conditio...
Gespeichert in:
Veröffentlicht in: | Pharmacoepidemiology and drug safety 2021-12, Vol.30 (12), p.1653-1674 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1674 |
---|---|
container_issue | 12 |
container_start_page | 1653 |
container_title | Pharmacoepidemiology and drug safety |
container_volume | 30 |
creator | Hsu, Meng‐Chen Wang, Chi‐Chuan Huang, Ling‐Ya Lin, Chih‐Ying Lin, Fang‐Ju Toh, Sengwee |
description | Purpose
To evaluate the effect of diagnostic coding system transition on the identification of common conditions recorded in Taiwan's national claims database.
Methods
Using the National Health Insurance Research Database, we estimated the 3‐month prevalence of recorded diagnosis of 32 conditions based on the ICD‐9‐CM codes in 2014–2015 and the ICD‐10‐CM codes in 2016–2017. Two algorithms were assessed for ICD‐10‐CM: validated ICD‐10 codes in the literature and codes translated from ICD‐9‐CM using an established mapping algorithm. We used segmented regression analysis on time‐series data to examine changes in the 3‐month prevalence (both level and trend) before and after the ICD‐10‐CM implementation.
Results
Significant changes in the level were found in 19 and 11 conditions when using the ICD‐10 codes from the literature and mapping algorithm, respectively. The conditions with inconsistent levels by both of the algorithms were valvular heart disease, peripheral vascular disease, mild liver disease, moderate to severe liver disease, metastatic cancer, rheumatoid arthritis and collagen vascular diseases, coagulopathy, blood loss anemia, deficiency anemia, alcohol abuse, and psychosis. Nine conditions had significant changes in the trend when using the ICD‐10 codes from the literature or mapping algorithm.
Conclusions
Less than half of the 32 conditions studied had a smooth transition between the ICD‐9‐CM and ICD‐10‐CM coding systems. Researchers should pay attention to the conditions where the coding definitions result in inconsistent time series estimates. |
doi_str_mv | 10.1002/pds.5330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2551581420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551581420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3490-dff40de5c75294b19d4e11e15a1791873981bb462216d1b5a7cd454bbfdf41a3</originalsourceid><addsrcrecordid>eNp1kc1q3DAQx0VpaT5a6BMUQS-5ONVY0trKLWw-IaWF5m5kaVQUbGsjyYS95QF66DPmSaLNblsoFCQ0mvnxY-BPyAdgx8BY_Xll07HknL0i-8CUqkDK5vWmlrxq5ULtkYOU7hgrMyXekj0uatm2UO-Tn-fOock0OHq9PHt6_KXKXX6hOez-wLYNE6yfftC0ThlHmqOeks8-TLQcb3HK3nmjtx1X6HEslQmTfaHSCT0t3JQxxnmV0dLsR6QJo8dE9aSHdfLpHXnj9JDw_e49JLcX57fLq-rm6-X18vSmMlwoVlnnBLMoTSNrJXpQViAAgtTQKGgbrlroe7Goa1hY6KVujBVS9L2zToDmh-Roq13FcD9jyt3ok8Fh0BOGOXW1lCBbEDUr6Kd_0Lswx7LuhlKCLwSX8FdoYkgpoutW0Y86rjtg3SagrgTUbQIq6MedcO5HtH_A34kUoNoCD37A9X9F3bez7y_CZ-iAnP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594364351</pqid></control><display><type>article</type><title>Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsu, Meng‐Chen ; Wang, Chi‐Chuan ; Huang, Ling‐Ya ; Lin, Chih‐Ying ; Lin, Fang‐Ju ; Toh, Sengwee</creator><creatorcontrib>Hsu, Meng‐Chen ; Wang, Chi‐Chuan ; Huang, Ling‐Ya ; Lin, Chih‐Ying ; Lin, Fang‐Ju ; Toh, Sengwee</creatorcontrib><description>Purpose
To evaluate the effect of diagnostic coding system transition on the identification of common conditions recorded in Taiwan's national claims database.
Methods
Using the National Health Insurance Research Database, we estimated the 3‐month prevalence of recorded diagnosis of 32 conditions based on the ICD‐9‐CM codes in 2014–2015 and the ICD‐10‐CM codes in 2016–2017. Two algorithms were assessed for ICD‐10‐CM: validated ICD‐10 codes in the literature and codes translated from ICD‐9‐CM using an established mapping algorithm. We used segmented regression analysis on time‐series data to examine changes in the 3‐month prevalence (both level and trend) before and after the ICD‐10‐CM implementation.
Results
Significant changes in the level were found in 19 and 11 conditions when using the ICD‐10 codes from the literature and mapping algorithm, respectively. The conditions with inconsistent levels by both of the algorithms were valvular heart disease, peripheral vascular disease, mild liver disease, moderate to severe liver disease, metastatic cancer, rheumatoid arthritis and collagen vascular diseases, coagulopathy, blood loss anemia, deficiency anemia, alcohol abuse, and psychosis. Nine conditions had significant changes in the trend when using the ICD‐10 codes from the literature or mapping algorithm.
Conclusions
Less than half of the 32 conditions studied had a smooth transition between the ICD‐9‐CM and ICD‐10‐CM coding systems. Researchers should pay attention to the conditions where the coding definitions result in inconsistent time series estimates.</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5330</identifier><identifier>PMID: 34258812</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Abuse ; Alcohol abuse ; Algorithms ; Anemia ; Clinical Coding ; Collagen ; Coronary artery disease ; Databases, Factual ; diagnostic coding transition ; Drug abuse ; Heart diseases ; Humans ; ICD‐10‐CM ; ICD‐9‐CM ; International Classification of Diseases ; Interrupted Time Series Analysis ; Liver cancer ; Liver diseases ; Mapping ; Metastases ; Prevalence ; Psychosis ; Rheumatoid arthritis ; Time series ; Vascular diseases</subject><ispartof>Pharmacoepidemiology and drug safety, 2021-12, Vol.30 (12), p.1653-1674</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3490-dff40de5c75294b19d4e11e15a1791873981bb462216d1b5a7cd454bbfdf41a3</citedby><cites>FETCH-LOGICAL-c3490-dff40de5c75294b19d4e11e15a1791873981bb462216d1b5a7cd454bbfdf41a3</cites><orcidid>0000-0002-4597-4859 ; 0000-0002-8249-7481 ; 0000-0002-5160-0810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5330$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5330$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34258812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Meng‐Chen</creatorcontrib><creatorcontrib>Wang, Chi‐Chuan</creatorcontrib><creatorcontrib>Huang, Ling‐Ya</creatorcontrib><creatorcontrib>Lin, Chih‐Ying</creatorcontrib><creatorcontrib>Lin, Fang‐Ju</creatorcontrib><creatorcontrib>Toh, Sengwee</creatorcontrib><title>Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis</title><title>Pharmacoepidemiology and drug safety</title><addtitle>Pharmacoepidemiol Drug Saf</addtitle><description>Purpose
To evaluate the effect of diagnostic coding system transition on the identification of common conditions recorded in Taiwan's national claims database.
Methods
Using the National Health Insurance Research Database, we estimated the 3‐month prevalence of recorded diagnosis of 32 conditions based on the ICD‐9‐CM codes in 2014–2015 and the ICD‐10‐CM codes in 2016–2017. Two algorithms were assessed for ICD‐10‐CM: validated ICD‐10 codes in the literature and codes translated from ICD‐9‐CM using an established mapping algorithm. We used segmented regression analysis on time‐series data to examine changes in the 3‐month prevalence (both level and trend) before and after the ICD‐10‐CM implementation.
Results
Significant changes in the level were found in 19 and 11 conditions when using the ICD‐10 codes from the literature and mapping algorithm, respectively. The conditions with inconsistent levels by both of the algorithms were valvular heart disease, peripheral vascular disease, mild liver disease, moderate to severe liver disease, metastatic cancer, rheumatoid arthritis and collagen vascular diseases, coagulopathy, blood loss anemia, deficiency anemia, alcohol abuse, and psychosis. Nine conditions had significant changes in the trend when using the ICD‐10 codes from the literature or mapping algorithm.
Conclusions
Less than half of the 32 conditions studied had a smooth transition between the ICD‐9‐CM and ICD‐10‐CM coding systems. Researchers should pay attention to the conditions where the coding definitions result in inconsistent time series estimates.</description><subject>Abuse</subject><subject>Alcohol abuse</subject><subject>Algorithms</subject><subject>Anemia</subject><subject>Clinical Coding</subject><subject>Collagen</subject><subject>Coronary artery disease</subject><subject>Databases, Factual</subject><subject>diagnostic coding transition</subject><subject>Drug abuse</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>ICD‐10‐CM</subject><subject>ICD‐9‐CM</subject><subject>International Classification of Diseases</subject><subject>Interrupted Time Series Analysis</subject><subject>Liver cancer</subject><subject>Liver diseases</subject><subject>Mapping</subject><subject>Metastases</subject><subject>Prevalence</subject><subject>Psychosis</subject><subject>Rheumatoid arthritis</subject><subject>Time series</subject><subject>Vascular diseases</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1q3DAQx0VpaT5a6BMUQS-5ONVY0trKLWw-IaWF5m5kaVQUbGsjyYS95QF66DPmSaLNblsoFCQ0mvnxY-BPyAdgx8BY_Xll07HknL0i-8CUqkDK5vWmlrxq5ULtkYOU7hgrMyXekj0uatm2UO-Tn-fOock0OHq9PHt6_KXKXX6hOez-wLYNE6yfftC0ThlHmqOeks8-TLQcb3HK3nmjtx1X6HEslQmTfaHSCT0t3JQxxnmV0dLsR6QJo8dE9aSHdfLpHXnj9JDw_e49JLcX57fLq-rm6-X18vSmMlwoVlnnBLMoTSNrJXpQViAAgtTQKGgbrlroe7Goa1hY6KVujBVS9L2zToDmh-Roq13FcD9jyt3ok8Fh0BOGOXW1lCBbEDUr6Kd_0Lswx7LuhlKCLwSX8FdoYkgpoutW0Y86rjtg3SagrgTUbQIq6MedcO5HtH_A34kUoNoCD37A9X9F3bez7y_CZ-iAnP8</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Hsu, Meng‐Chen</creator><creator>Wang, Chi‐Chuan</creator><creator>Huang, Ling‐Ya</creator><creator>Lin, Chih‐Ying</creator><creator>Lin, Fang‐Ju</creator><creator>Toh, Sengwee</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4597-4859</orcidid><orcidid>https://orcid.org/0000-0002-8249-7481</orcidid><orcidid>https://orcid.org/0000-0002-5160-0810</orcidid></search><sort><creationdate>202112</creationdate><title>Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis</title><author>Hsu, Meng‐Chen ; Wang, Chi‐Chuan ; Huang, Ling‐Ya ; Lin, Chih‐Ying ; Lin, Fang‐Ju ; Toh, Sengwee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3490-dff40de5c75294b19d4e11e15a1791873981bb462216d1b5a7cd454bbfdf41a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abuse</topic><topic>Alcohol abuse</topic><topic>Algorithms</topic><topic>Anemia</topic><topic>Clinical Coding</topic><topic>Collagen</topic><topic>Coronary artery disease</topic><topic>Databases, Factual</topic><topic>diagnostic coding transition</topic><topic>Drug abuse</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>ICD‐10‐CM</topic><topic>ICD‐9‐CM</topic><topic>International Classification of Diseases</topic><topic>Interrupted Time Series Analysis</topic><topic>Liver cancer</topic><topic>Liver diseases</topic><topic>Mapping</topic><topic>Metastases</topic><topic>Prevalence</topic><topic>Psychosis</topic><topic>Rheumatoid arthritis</topic><topic>Time series</topic><topic>Vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Meng‐Chen</creatorcontrib><creatorcontrib>Wang, Chi‐Chuan</creatorcontrib><creatorcontrib>Huang, Ling‐Ya</creatorcontrib><creatorcontrib>Lin, Chih‐Ying</creatorcontrib><creatorcontrib>Lin, Fang‐Ju</creatorcontrib><creatorcontrib>Toh, Sengwee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Meng‐Chen</au><au>Wang, Chi‐Chuan</au><au>Huang, Ling‐Ya</au><au>Lin, Chih‐Ying</au><au>Lin, Fang‐Ju</au><au>Toh, Sengwee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><addtitle>Pharmacoepidemiol Drug Saf</addtitle><date>2021-12</date><risdate>2021</risdate><volume>30</volume><issue>12</issue><spage>1653</spage><epage>1674</epage><pages>1653-1674</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Purpose
To evaluate the effect of diagnostic coding system transition on the identification of common conditions recorded in Taiwan's national claims database.
Methods
Using the National Health Insurance Research Database, we estimated the 3‐month prevalence of recorded diagnosis of 32 conditions based on the ICD‐9‐CM codes in 2014–2015 and the ICD‐10‐CM codes in 2016–2017. Two algorithms were assessed for ICD‐10‐CM: validated ICD‐10 codes in the literature and codes translated from ICD‐9‐CM using an established mapping algorithm. We used segmented regression analysis on time‐series data to examine changes in the 3‐month prevalence (both level and trend) before and after the ICD‐10‐CM implementation.
Results
Significant changes in the level were found in 19 and 11 conditions when using the ICD‐10 codes from the literature and mapping algorithm, respectively. The conditions with inconsistent levels by both of the algorithms were valvular heart disease, peripheral vascular disease, mild liver disease, moderate to severe liver disease, metastatic cancer, rheumatoid arthritis and collagen vascular diseases, coagulopathy, blood loss anemia, deficiency anemia, alcohol abuse, and psychosis. Nine conditions had significant changes in the trend when using the ICD‐10 codes from the literature or mapping algorithm.
Conclusions
Less than half of the 32 conditions studied had a smooth transition between the ICD‐9‐CM and ICD‐10‐CM coding systems. Researchers should pay attention to the conditions where the coding definitions result in inconsistent time series estimates.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><pmid>34258812</pmid><doi>10.1002/pds.5330</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4597-4859</orcidid><orcidid>https://orcid.org/0000-0002-8249-7481</orcidid><orcidid>https://orcid.org/0000-0002-5160-0810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8569 |
ispartof | Pharmacoepidemiology and drug safety, 2021-12, Vol.30 (12), p.1653-1674 |
issn | 1053-8569 1099-1557 |
language | eng |
recordid | cdi_proquest_miscellaneous_2551581420 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abuse Alcohol abuse Algorithms Anemia Clinical Coding Collagen Coronary artery disease Databases, Factual diagnostic coding transition Drug abuse Heart diseases Humans ICD‐10‐CM ICD‐9‐CM International Classification of Diseases Interrupted Time Series Analysis Liver cancer Liver diseases Mapping Metastases Prevalence Psychosis Rheumatoid arthritis Time series Vascular diseases |
title | Effect of ICD‐9‐CM to ICD‐10‐CM coding system transition on identification of common conditions: An interrupted time series analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20ICD%E2%80%909%E2%80%90CM%20to%20ICD%E2%80%9010%E2%80%90CM%20coding%20system%20transition%20on%20identification%20of%20common%20conditions:%20An%20interrupted%20time%20series%20analysis&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Hsu,%20Meng%E2%80%90Chen&rft.date=2021-12&rft.volume=30&rft.issue=12&rft.spage=1653&rft.epage=1674&rft.pages=1653-1674&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5330&rft_dat=%3Cproquest_cross%3E2551581420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594364351&rft_id=info:pmid/34258812&rfr_iscdi=true |