Exclusion and multiplicity for stable communities in Lotka–Volterra systems
For classic Lotka–Volterra systems governing many interacting species, we establish an exclusion principle that rules out the existence of linearly asymptotically stable steady states in subcommunities of communities that admit a stable state which is internally D -stable. This type of stability is...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2021-08, Vol.83 (2), p.16-16, Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 2 |
container_start_page | 16 |
container_title | Journal of mathematical biology |
container_volume | 83 |
creator | Hong, Won Eui Pego, Robert L. |
description | For classic Lotka–Volterra systems governing many interacting species, we establish an exclusion principle that rules out the existence of linearly asymptotically stable steady states in subcommunities of communities that admit a stable state which is internally
D
-stable. This type of stability is known to be ensured, e.g., by diagonal dominance or Volterra–Lyapunov stability conditions. By consequence, the number of stable steady states of this type is bounded by Sperner’s lemma on anti-chains in a poset. The number of stable steady states can nevertheless be very large if there are many groups of species that strongly inhibit outsiders but have weak interactions among themselves. By examples we also show that in general it is possible for a stable community to contain a stable subcommunity consisting of a single species. Thus a recent empirical finding to the contrary, in a study of random competitive systems by Lischke and Löffler (Theor Popul Biol 115:24–34, 2017), does not hold without qualification. |
doi_str_mv | 10.1007/s00285-021-01638-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2551579288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551416631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-35b510fae4c25bd2f95f3e3f861d4012b8da88e7b41f9ecab8622d7594b6281a3</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuCGzfVfEnTpksZ_IMRN-o2pGkqGdNmTFJwdr6Db-iTGKeC4MLV3Zx7uRyEjgGfAcbVecCYcJZjAjmGkvK82kEzKCjJoYByF80wxTQvOZB9dBDCCmOoWA0zdHf5puwYjBsyObRZP9po1tYoEzdZ53wWomyszpTr-3Ew0eiQmSFbuvgiP98_npyN2nuZhU2Iug-HaK-TNuijn5yjx6vLh8VNvry_vl1cLHOVbsScsoYB7qQuFGFNS7qadVTTjpfQFhhIw1vJua6aArpaK9nwkpA2HS6aknCQdI5Op921d6-jDlH0JihtrRy0G4MgjAGrasJ5Qk_-oCs3-iG921LJTkkhUWSilHcheN2JtTe99BsBWHwbFpNhkQyLrWFRpRKdSiHBw7P2v9P_tL4AWJZ_cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551416631</pqid></control><display><type>article</type><title>Exclusion and multiplicity for stable communities in Lotka–Volterra systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Hong, Won Eui ; Pego, Robert L.</creator><creatorcontrib>Hong, Won Eui ; Pego, Robert L.</creatorcontrib><description>For classic Lotka–Volterra systems governing many interacting species, we establish an exclusion principle that rules out the existence of linearly asymptotically stable steady states in subcommunities of communities that admit a stable state which is internally
D
-stable. This type of stability is known to be ensured, e.g., by diagonal dominance or Volterra–Lyapunov stability conditions. By consequence, the number of stable steady states of this type is bounded by Sperner’s lemma on anti-chains in a poset. The number of stable steady states can nevertheless be very large if there are many groups of species that strongly inhibit outsiders but have weak interactions among themselves. By examples we also show that in general it is possible for a stable community to contain a stable subcommunity consisting of a single species. Thus a recent empirical finding to the contrary, in a study of random competitive systems by Lischke and Löffler (Theor Popul Biol 115:24–34, 2017), does not hold without qualification.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-021-01638-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Community ; Competition ; Ecology ; Equilibrium ; Game theory ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Principles ; Set theory ; Species ; Stability ; Steady state</subject><ispartof>Journal of mathematical biology, 2021-08, Vol.83 (2), p.16-16, Article 16</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-35b510fae4c25bd2f95f3e3f861d4012b8da88e7b41f9ecab8622d7594b6281a3</cites><orcidid>0000-0001-8502-2820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-021-01638-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-021-01638-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hong, Won Eui</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><title>Exclusion and multiplicity for stable communities in Lotka–Volterra systems</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><description>For classic Lotka–Volterra systems governing many interacting species, we establish an exclusion principle that rules out the existence of linearly asymptotically stable steady states in subcommunities of communities that admit a stable state which is internally
D
-stable. This type of stability is known to be ensured, e.g., by diagonal dominance or Volterra–Lyapunov stability conditions. By consequence, the number of stable steady states of this type is bounded by Sperner’s lemma on anti-chains in a poset. The number of stable steady states can nevertheless be very large if there are many groups of species that strongly inhibit outsiders but have weak interactions among themselves. By examples we also show that in general it is possible for a stable community to contain a stable subcommunity consisting of a single species. Thus a recent empirical finding to the contrary, in a study of random competitive systems by Lischke and Löffler (Theor Popul Biol 115:24–34, 2017), does not hold without qualification.</description><subject>Applications of Mathematics</subject><subject>Community</subject><subject>Competition</subject><subject>Ecology</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Set theory</subject><subject>Species</subject><subject>Stability</subject><subject>Steady state</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAYRYMoOI6-gKuCGzfVfEnTpksZ_IMRN-o2pGkqGdNmTFJwdr6Db-iTGKeC4MLV3Zx7uRyEjgGfAcbVecCYcJZjAjmGkvK82kEzKCjJoYByF80wxTQvOZB9dBDCCmOoWA0zdHf5puwYjBsyObRZP9po1tYoEzdZ53wWomyszpTr-3Ew0eiQmSFbuvgiP98_npyN2nuZhU2Iug-HaK-TNuijn5yjx6vLh8VNvry_vl1cLHOVbsScsoYB7qQuFGFNS7qadVTTjpfQFhhIw1vJua6aArpaK9nwkpA2HS6aknCQdI5Op921d6-jDlH0JihtrRy0G4MgjAGrasJ5Qk_-oCs3-iG921LJTkkhUWSilHcheN2JtTe99BsBWHwbFpNhkQyLrWFRpRKdSiHBw7P2v9P_tL4AWJZ_cw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Hong, Won Eui</creator><creator>Pego, Robert L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8502-2820</orcidid></search><sort><creationdate>20210801</creationdate><title>Exclusion and multiplicity for stable communities in Lotka–Volterra systems</title><author>Hong, Won Eui ; Pego, Robert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-35b510fae4c25bd2f95f3e3f861d4012b8da88e7b41f9ecab8622d7594b6281a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Community</topic><topic>Competition</topic><topic>Ecology</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Set theory</topic><topic>Species</topic><topic>Stability</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Won Eui</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Won Eui</au><au>Pego, Robert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exclusion and multiplicity for stable communities in Lotka–Volterra systems</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>83</volume><issue>2</issue><spage>16</spage><epage>16</epage><pages>16-16</pages><artnum>16</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>For classic Lotka–Volterra systems governing many interacting species, we establish an exclusion principle that rules out the existence of linearly asymptotically stable steady states in subcommunities of communities that admit a stable state which is internally
D
-stable. This type of stability is known to be ensured, e.g., by diagonal dominance or Volterra–Lyapunov stability conditions. By consequence, the number of stable steady states of this type is bounded by Sperner’s lemma on anti-chains in a poset. The number of stable steady states can nevertheless be very large if there are many groups of species that strongly inhibit outsiders but have weak interactions among themselves. By examples we also show that in general it is possible for a stable community to contain a stable subcommunity consisting of a single species. Thus a recent empirical finding to the contrary, in a study of random competitive systems by Lischke and Löffler (Theor Popul Biol 115:24–34, 2017), does not hold without qualification.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00285-021-01638-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8502-2820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2021-08, Vol.83 (2), p.16-16, Article 16 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_2551579288 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Community Competition Ecology Equilibrium Game theory Mathematical and Computational Biology Mathematics Mathematics and Statistics Principles Set theory Species Stability Steady state |
title | Exclusion and multiplicity for stable communities in Lotka–Volterra systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exclusion%20and%20multiplicity%20for%20stable%20communities%20in%20Lotka%E2%80%93Volterra%20systems&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Hong,%20Won%20Eui&rft.date=2021-08-01&rft.volume=83&rft.issue=2&rft.spage=16&rft.epage=16&rft.pages=16-16&rft.artnum=16&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-021-01638-7&rft_dat=%3Cproquest_cross%3E2551416631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551416631&rft_id=info:pmid/&rfr_iscdi=true |