Mechanometabolism: Mitochondria promote resilience under pressure

Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival. Mechanical forces regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2021-07, Vol.31 (13), p.R859-R861
Hauptverfasser: MacVicar, Thomas, Langer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R861
container_issue 13
container_start_page R859
container_title Current biology
container_volume 31
creator MacVicar, Thomas
Langer, Thomas
description Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival. Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.
doi_str_mv 10.1016/j.cub.2021.05.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2551576135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982221007636</els_id><sourcerecordid>2551576135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-4ab31b2b178b158e427b5821e585236273bb0d1cfe4fcafccecddf0b3184cccd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1hQR5YE24nzAROq-JJascBs2eeL6iqJi50g8e9xaWFkuuGe99XdQ8gloymjrLjZpDDqlFPOUipSWogjMmVVWSc0z8UxmdK6oEldcT4hZyFsKGW8qotTMslyLoqasym5XyGsVe86HJR2rQ3d7XxlBwdr1xtv1XzrXecGnHsMtrXYA87H3qCPCwxh9HhOThrVBrw4zBl5f3x4Wzwny9enl8X9MoGsLoYkVzpjmmtWVpqJCnNealFxhqISPCt4mWlNDYMG8wZUA4BgTENjqMoBwGQzcr3vjRd9jBgG2dkA2LaqRzcGyYVgoixYJiLK9ih4F4LHRm697ZT_kozKnTm5kdGc3JmTVMhoLmauDvWj7tD8JX5VReBuD2B88tOilwF-fBjrEQZpnP2n_hvZon_P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551576135</pqid></control><display><type>article</type><title>Mechanometabolism: Mitochondria promote resilience under pressure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MacVicar, Thomas ; Langer, Thomas</creator><creatorcontrib>MacVicar, Thomas ; Langer, Thomas</creatorcontrib><description>Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival. Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2021.05.065</identifier><identifier>PMID: 34256921</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Mitochondria - metabolism ; Oxidative Stress - physiology</subject><ispartof>Current biology, 2021-07, Vol.31 (13), p.R859-R861</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-4ab31b2b178b158e427b5821e585236273bb0d1cfe4fcafccecddf0b3184cccd3</citedby><cites>FETCH-LOGICAL-c396t-4ab31b2b178b158e427b5821e585236273bb0d1cfe4fcafccecddf0b3184cccd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2021.05.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34256921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacVicar, Thomas</creatorcontrib><creatorcontrib>Langer, Thomas</creatorcontrib><title>Mechanometabolism: Mitochondria promote resilience under pressure</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival. Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.</description><subject>Mitochondria - metabolism</subject><subject>Oxidative Stress - physiology</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwA1hQR5YE24nzAROq-JJascBs2eeL6iqJi50g8e9xaWFkuuGe99XdQ8gloymjrLjZpDDqlFPOUipSWogjMmVVWSc0z8UxmdK6oEldcT4hZyFsKGW8qotTMslyLoqasym5XyGsVe86HJR2rQ3d7XxlBwdr1xtv1XzrXecGnHsMtrXYA87H3qCPCwxh9HhOThrVBrw4zBl5f3x4Wzwny9enl8X9MoGsLoYkVzpjmmtWVpqJCnNealFxhqISPCt4mWlNDYMG8wZUA4BgTENjqMoBwGQzcr3vjRd9jBgG2dkA2LaqRzcGyYVgoixYJiLK9ih4F4LHRm697ZT_kozKnTm5kdGc3JmTVMhoLmauDvWj7tD8JX5VReBuD2B88tOilwF-fBjrEQZpnP2n_hvZon_P</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>MacVicar, Thomas</creator><creator>Langer, Thomas</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210712</creationdate><title>Mechanometabolism: Mitochondria promote resilience under pressure</title><author>MacVicar, Thomas ; Langer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-4ab31b2b178b158e427b5821e585236273bb0d1cfe4fcafccecddf0b3184cccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mitochondria - metabolism</topic><topic>Oxidative Stress - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacVicar, Thomas</creatorcontrib><creatorcontrib>Langer, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacVicar, Thomas</au><au>Langer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanometabolism: Mitochondria promote resilience under pressure</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2021-07-12</date><risdate>2021</risdate><volume>31</volume><issue>13</issue><spage>R859</spage><epage>R861</epage><pages>R859-R861</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival. Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>34256921</pmid><doi>10.1016/j.cub.2021.05.065</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2021-07, Vol.31 (13), p.R859-R861
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_2551576135
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Mitochondria - metabolism
Oxidative Stress - physiology
title Mechanometabolism: Mitochondria promote resilience under pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanometabolism:%20Mitochondria%20promote%20resilience%20under%20pressure&rft.jtitle=Current%20biology&rft.au=MacVicar,%20Thomas&rft.date=2021-07-12&rft.volume=31&rft.issue=13&rft.spage=R859&rft.epage=R861&rft.pages=R859-R861&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2021.05.065&rft_dat=%3Cproquest_cross%3E2551576135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551576135&rft_id=info:pmid/34256921&rft_els_id=S0960982221007636&rfr_iscdi=true