Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment

This work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-12, Vol.28 (47), p.67414-67428
Hauptverfasser: Santiago-Díaz, Ángel Luis, Mugica-Álvarez, Violeta, de los Cobos-Vasconcelos, Daniel, Vaca-Mier, Mabel, Salazar-Peláez, Mónica Liliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67428
container_issue 47
container_start_page 67414
container_title Environmental science and pollution research international
container_volume 28
creator Santiago-Díaz, Ángel Luis
Mugica-Álvarez, Violeta
de los Cobos-Vasconcelos, Daniel
Vaca-Mier, Mabel
Salazar-Peláez, Mónica Liliana
description This work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. The modified Stover-Kincannon model provided the best fitting to calculate kinetics constants, with an R 2 above 98% for linear regression, and predicted the effluent COD more accurately than the other models. Methane yield was 0.3294 L CH 4 /g COD removed, being closer to the theoretical value, and the Van der Meer and Heertjes model had the highest R 2 for methane production. Organic matter and solids removal were 45% for TS, 70% and 68% for total and soluble COD, and 85% for TSS. Pollutant removal markedly decreased when the reactor operated HRT below 24 h; thus, it is recommended to operate the UASB-septic tank at this HRT.
doi_str_mv 10.1007/s11356-021-15141-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2551208672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605779265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fe1c7686ecdb535a99c133ac79530253a04fe11ed3c36380e1944e7e47d1bf653</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhD3BAlrhwCXj8mRxRxUelSnCAs-U4k1XaxF5sh1VP_HWcbgGJA5w8nnnmnRm9hDwH9hoYM28ygFC6YRwaUCChUQ_IDjTIxsiue0h2rJOyASHlGXmS8zVjnHXcPCZnQnIluRQ78uMzpjGmxQWPFL-7eXVlioG6MNCbKWCZPF3igPMU9jSONU_XwzjHY40cptjXep7XYY-0n124wUIzHrauUn-0StMhLpi3zNHlgkdXMNGS0JUFQ3lKHo1uzvjs_j0nX9-_-3Lxsbn69OHy4u1V4yVrSzMieKNbjX7olVCu6zwI4bzplGBcCcdkRQAH4YUWLUOop6NBaQboR63EOXl10j2k-G2t-9hlyh7nujPGNVuuhZbMtC3_P6oUcNZqs6Ev_0Kv45pCPaQKMmVMx-9m8xPlU8w54WgPaVpcurXA7OakPTlpq5P2zkm7Nb24l177BYffLb-sq4A4AbmWwh7Tn9n_kP0JW-CqIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605779265</pqid></control><display><type>article</type><title>Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Santiago-Díaz, Ángel Luis ; Mugica-Álvarez, Violeta ; de los Cobos-Vasconcelos, Daniel ; Vaca-Mier, Mabel ; Salazar-Peláez, Mónica Liliana</creator><creatorcontrib>Santiago-Díaz, Ángel Luis ; Mugica-Álvarez, Violeta ; de los Cobos-Vasconcelos, Daniel ; Vaca-Mier, Mabel ; Salazar-Peláez, Mónica Liliana</creatorcontrib><description>This work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. The modified Stover-Kincannon model provided the best fitting to calculate kinetics constants, with an R 2 above 98% for linear regression, and predicted the effluent COD more accurately than the other models. Methane yield was 0.3294 L CH 4 /g COD removed, being closer to the theoretical value, and the Van der Meer and Heertjes model had the highest R 2 for methane production. Organic matter and solids removal were 45% for TS, 70% and 68% for total and soluble COD, and 85% for TSS. Pollutant removal markedly decreased when the reactor operated HRT below 24 h; thus, it is recommended to operate the UASB-septic tank at this HRT.</description><identifier>ISSN: 0944-1344</identifier><identifier>ISSN: 1614-7499</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-15141-5</identifier><identifier>PMID: 34254243</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anaerobiosis ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioreactors ; Domestic wastewater ; Earth and Environmental Science ; Ecotoxicology ; Effluents ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Growth models ; Hydraulics ; Kinetics ; Loading rate ; Mathematical models ; Methane ; methane production ; municipal wastewater ; Organic loading ; Organic matter ; Performance evaluation ; Pollutant removal ; Pollutants ; pollution control ; Reactors ; regression analysis ; Research Article ; Sanitation services ; septic systems ; Septic tanks ; Sewage ; sewage treatment ; Sludge ; upflow anaerobic sludge blanket reactor ; Upflow anaerobic sludge blanket reactors ; Waste Disposal, Fluid ; Waste Water Technology ; Wastewater treatment ; Water Management ; Water Pollution Control ; Water Purification ; Water treatment</subject><ispartof>Environmental science and pollution research international, 2021-12, Vol.28 (47), p.67414-67428</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fe1c7686ecdb535a99c133ac79530253a04fe11ed3c36380e1944e7e47d1bf653</citedby><cites>FETCH-LOGICAL-c408t-fe1c7686ecdb535a99c133ac79530253a04fe11ed3c36380e1944e7e47d1bf653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-15141-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-15141-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34254243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santiago-Díaz, Ángel Luis</creatorcontrib><creatorcontrib>Mugica-Álvarez, Violeta</creatorcontrib><creatorcontrib>de los Cobos-Vasconcelos, Daniel</creatorcontrib><creatorcontrib>Vaca-Mier, Mabel</creatorcontrib><creatorcontrib>Salazar-Peláez, Mónica Liliana</creatorcontrib><title>Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>This work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. The modified Stover-Kincannon model provided the best fitting to calculate kinetics constants, with an R 2 above 98% for linear regression, and predicted the effluent COD more accurately than the other models. Methane yield was 0.3294 L CH 4 /g COD removed, being closer to the theoretical value, and the Van der Meer and Heertjes model had the highest R 2 for methane production. Organic matter and solids removal were 45% for TS, 70% and 68% for total and soluble COD, and 85% for TSS. Pollutant removal markedly decreased when the reactor operated HRT below 24 h; thus, it is recommended to operate the UASB-septic tank at this HRT.</description><subject>Anaerobiosis</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioreactors</subject><subject>Domestic wastewater</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Effluents</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Growth models</subject><subject>Hydraulics</subject><subject>Kinetics</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>methane production</subject><subject>municipal wastewater</subject><subject>Organic loading</subject><subject>Organic matter</subject><subject>Performance evaluation</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>pollution control</subject><subject>Reactors</subject><subject>regression analysis</subject><subject>Research Article</subject><subject>Sanitation services</subject><subject>septic systems</subject><subject>Septic tanks</subject><subject>Sewage</subject><subject>sewage treatment</subject><subject>Sludge</subject><subject>upflow anaerobic sludge blanket reactor</subject><subject>Upflow anaerobic sludge blanket reactors</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Water Technology</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Purification</subject><subject>Water treatment</subject><issn>0944-1344</issn><issn>1614-7499</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhD3BAlrhwCXj8mRxRxUelSnCAs-U4k1XaxF5sh1VP_HWcbgGJA5w8nnnmnRm9hDwH9hoYM28ygFC6YRwaUCChUQ_IDjTIxsiue0h2rJOyASHlGXmS8zVjnHXcPCZnQnIluRQ78uMzpjGmxQWPFL-7eXVlioG6MNCbKWCZPF3igPMU9jSONU_XwzjHY40cptjXep7XYY-0n124wUIzHrauUn-0StMhLpi3zNHlgkdXMNGS0JUFQ3lKHo1uzvjs_j0nX9-_-3Lxsbn69OHy4u1V4yVrSzMieKNbjX7olVCu6zwI4bzplGBcCcdkRQAH4YUWLUOop6NBaQboR63EOXl10j2k-G2t-9hlyh7nujPGNVuuhZbMtC3_P6oUcNZqs6Ev_0Kv45pCPaQKMmVMx-9m8xPlU8w54WgPaVpcurXA7OakPTlpq5P2zkm7Nb24l177BYffLb-sq4A4AbmWwh7Tn9n_kP0JW-CqIA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Santiago-Díaz, Ángel Luis</creator><creator>Mugica-Álvarez, Violeta</creator><creator>de los Cobos-Vasconcelos, Daniel</creator><creator>Vaca-Mier, Mabel</creator><creator>Salazar-Peláez, Mónica Liliana</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20211201</creationdate><title>Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment</title><author>Santiago-Díaz, Ángel Luis ; Mugica-Álvarez, Violeta ; de los Cobos-Vasconcelos, Daniel ; Vaca-Mier, Mabel ; Salazar-Peláez, Mónica Liliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fe1c7686ecdb535a99c133ac79530253a04fe11ed3c36380e1944e7e47d1bf653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anaerobiosis</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioreactors</topic><topic>Domestic wastewater</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Effluents</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Growth models</topic><topic>Hydraulics</topic><topic>Kinetics</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>methane production</topic><topic>municipal wastewater</topic><topic>Organic loading</topic><topic>Organic matter</topic><topic>Performance evaluation</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>pollution control</topic><topic>Reactors</topic><topic>regression analysis</topic><topic>Research Article</topic><topic>Sanitation services</topic><topic>septic systems</topic><topic>Septic tanks</topic><topic>Sewage</topic><topic>sewage treatment</topic><topic>Sludge</topic><topic>upflow anaerobic sludge blanket reactor</topic><topic>Upflow anaerobic sludge blanket reactors</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Water Technology</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiago-Díaz, Ángel Luis</creatorcontrib><creatorcontrib>Mugica-Álvarez, Violeta</creatorcontrib><creatorcontrib>de los Cobos-Vasconcelos, Daniel</creatorcontrib><creatorcontrib>Vaca-Mier, Mabel</creatorcontrib><creatorcontrib>Salazar-Peláez, Mónica Liliana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santiago-Díaz, Ángel Luis</au><au>Mugica-Álvarez, Violeta</au><au>de los Cobos-Vasconcelos, Daniel</au><au>Vaca-Mier, Mabel</au><au>Salazar-Peláez, Mónica Liliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>28</volume><issue>47</issue><spage>67414</spage><epage>67428</epage><pages>67414-67428</pages><issn>0944-1344</issn><issn>1614-7499</issn><eissn>1614-7499</eissn><abstract>This work evaluated the UASB-septic tank performance using different kinetic models that correlated process efficiency and methane production with hydraulic and organic loading rates through experiments with five different HRT (48 h, 36 h, 24 h, 18 h, and 12 h) using synthetic domestic wastewater. The modified Stover-Kincannon model provided the best fitting to calculate kinetics constants, with an R 2 above 98% for linear regression, and predicted the effluent COD more accurately than the other models. Methane yield was 0.3294 L CH 4 /g COD removed, being closer to the theoretical value, and the Van der Meer and Heertjes model had the highest R 2 for methane production. Organic matter and solids removal were 45% for TS, 70% and 68% for total and soluble COD, and 85% for TSS. Pollutant removal markedly decreased when the reactor operated HRT below 24 h; thus, it is recommended to operate the UASB-septic tank at this HRT.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34254243</pmid><doi>10.1007/s11356-021-15141-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-12, Vol.28 (47), p.67414-67428
issn 0944-1344
1614-7499
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2551208672
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anaerobiosis
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bioreactors
Domestic wastewater
Earth and Environmental Science
Ecotoxicology
Effluents
Environment
Environmental Chemistry
Environmental Health
Environmental science
Growth models
Hydraulics
Kinetics
Loading rate
Mathematical models
Methane
methane production
municipal wastewater
Organic loading
Organic matter
Performance evaluation
Pollutant removal
Pollutants
pollution control
Reactors
regression analysis
Research Article
Sanitation services
septic systems
Septic tanks
Sewage
sewage treatment
Sludge
upflow anaerobic sludge blanket reactor
Upflow anaerobic sludge blanket reactors
Waste Disposal, Fluid
Waste Water Technology
Wastewater treatment
Water Management
Water Pollution Control
Water Purification
Water treatment
title Performance evaluation and kinetic modeling of an upflow anaerobic sludge blanket septic tank for domestic wastewater treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20and%20kinetic%20modeling%20of%20an%20upflow%20anaerobic%20sludge%20blanket%20septic%20tank%20for%20domestic%20wastewater%20treatment&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Santiago-D%C3%ADaz,%20%C3%81ngel%20Luis&rft.date=2021-12-01&rft.volume=28&rft.issue=47&rft.spage=67414&rft.epage=67428&rft.pages=67414-67428&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-15141-5&rft_dat=%3Cproquest_cross%3E2605779265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605779265&rft_id=info:pmid/34254243&rfr_iscdi=true