Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane

An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2021-09, Vol.569, p.179-186
Hauptverfasser: Kunii, Hiroki, Kubo, Tomoaki, Asaoka, Natsuki, Balboula, Ahmed Z., Hamaguchi, Yu, Shimasaki, Tomoya, Bai, Hanako, Kawahara, Manabu, Kobayashi, Hisato, Ogawa, Hidehiko, Takahashi, Masashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 179
container_title Biochemical and biophysical research communications
container_volume 569
creator Kunii, Hiroki
Kubo, Tomoaki
Asaoka, Natsuki
Balboula, Ahmed Z.
Hamaguchi, Yu
Shimasaki, Tomoya
Bai, Hanako
Kawahara, Manabu
Kobayashi, Hisato
Ogawa, Hidehiko
Takahashi, Masashi
description An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17–18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus. •Quick and high-sensitive pregnancy detection in cows by LAMP-machine learning.•Quick and non-invasive collection of vaginal mucosa for pregnancy detection.•Identification of up and downregulated genes in pregnant bovine vaginal mucosa.•A combined use of up and downregulated genes can increase prediction accuracy.
doi_str_mv 10.1016/j.bbrc.2021.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2551207031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X21010469</els_id><sourcerecordid>2551207031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-57432943a18938937ca194780cf07c3ebcc67c60233f590885f997b36f9f51ff3</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhoMoOK6-gKcc10O3laS70wEvy-KqMKIHBW8hna7MZuhO2qRnYF7DJzbt7FkoKKh8fyr5f0LeMqgZsO79sR6GZGsOnNUga2DtM7JjoKDiDJrnZAcAXcUV-_WSvMr5CMBY06kd-bOPcalmHL1ZcaQ-x_UR02wmauZl8s5bs_oY6O3-7uv3d9SEkc7GPvqAdEKTgg8HapZCPnEuJlrm04UuCQ_BBHuhI65o_52e8sYP8bzpz-bgQ1k0n2zMW8d5SCbga_LCmSnjm6d-Q34-fPxx_7naf_v05f5uX9mml2vVykZw1QjDeiVKSWuYamQP1oG0AgdrO2k74EK4VkHft04pOYjOKdcy58QNub3eu6T4-4R51bPPFqepvCGesuZtyzhIEKyg_IraFHNO6PSS_GzSRTPQWwD6qLcA9BaABqlLAEX04SrC8omzx6Sz9Rhs8ToVP_QY_f_kfwGBl5D-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551207031</pqid></control><display><type>article</type><title>Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane</title><source>Elsevier ScienceDirect Journals</source><creator>Kunii, Hiroki ; Kubo, Tomoaki ; Asaoka, Natsuki ; Balboula, Ahmed Z. ; Hamaguchi, Yu ; Shimasaki, Tomoya ; Bai, Hanako ; Kawahara, Manabu ; Kobayashi, Hisato ; Ogawa, Hidehiko ; Takahashi, Masashi</creator><creatorcontrib>Kunii, Hiroki ; Kubo, Tomoaki ; Asaoka, Natsuki ; Balboula, Ahmed Z. ; Hamaguchi, Yu ; Shimasaki, Tomoya ; Bai, Hanako ; Kawahara, Manabu ; Kobayashi, Hisato ; Ogawa, Hidehiko ; Takahashi, Masashi</creatorcontrib><description>An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17–18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus. •Quick and high-sensitive pregnancy detection in cows by LAMP-machine learning.•Quick and non-invasive collection of vaginal mucosa for pregnancy detection.•Identification of up and downregulated genes in pregnant bovine vaginal mucosa.•A combined use of up and downregulated genes can increase prediction accuracy.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2021.07.015</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cow ; Early pregnancy detection ; Loop-mediated isothermal amplification(LAMP) ; Machine learning ; Vaginal mucosa</subject><ispartof>Biochemical and biophysical research communications, 2021-09, Vol.569, p.179-186</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-57432943a18938937ca194780cf07c3ebcc67c60233f590885f997b36f9f51ff3</citedby><cites>FETCH-LOGICAL-c487t-57432943a18938937ca194780cf07c3ebcc67c60233f590885f997b36f9f51ff3</cites><orcidid>0000-0001-9663-6262 ; 0000-0002-2448-915X ; 0000-0001-9940-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X21010469$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kunii, Hiroki</creatorcontrib><creatorcontrib>Kubo, Tomoaki</creatorcontrib><creatorcontrib>Asaoka, Natsuki</creatorcontrib><creatorcontrib>Balboula, Ahmed Z.</creatorcontrib><creatorcontrib>Hamaguchi, Yu</creatorcontrib><creatorcontrib>Shimasaki, Tomoya</creatorcontrib><creatorcontrib>Bai, Hanako</creatorcontrib><creatorcontrib>Kawahara, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Hisato</creatorcontrib><creatorcontrib>Ogawa, Hidehiko</creatorcontrib><creatorcontrib>Takahashi, Masashi</creatorcontrib><title>Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane</title><title>Biochemical and biophysical research communications</title><description>An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17–18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus. •Quick and high-sensitive pregnancy detection in cows by LAMP-machine learning.•Quick and non-invasive collection of vaginal mucosa for pregnancy detection.•Identification of up and downregulated genes in pregnant bovine vaginal mucosa.•A combined use of up and downregulated genes can increase prediction accuracy.</description><subject>Cow</subject><subject>Early pregnancy detection</subject><subject>Loop-mediated isothermal amplification(LAMP)</subject><subject>Machine learning</subject><subject>Vaginal mucosa</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcGKFDEQhoMoOK6-gKcc10O3laS70wEvy-KqMKIHBW8hna7MZuhO2qRnYF7DJzbt7FkoKKh8fyr5f0LeMqgZsO79sR6GZGsOnNUga2DtM7JjoKDiDJrnZAcAXcUV-_WSvMr5CMBY06kd-bOPcalmHL1ZcaQ-x_UR02wmauZl8s5bs_oY6O3-7uv3d9SEkc7GPvqAdEKTgg8HapZCPnEuJlrm04UuCQ_BBHuhI65o_52e8sYP8bzpz-bgQ1k0n2zMW8d5SCbga_LCmSnjm6d-Q34-fPxx_7naf_v05f5uX9mml2vVykZw1QjDeiVKSWuYamQP1oG0AgdrO2k74EK4VkHft04pOYjOKdcy58QNub3eu6T4-4R51bPPFqepvCGesuZtyzhIEKyg_IraFHNO6PSS_GzSRTPQWwD6qLcA9BaABqlLAEX04SrC8omzx6Sz9Rhs8ToVP_QY_f_kfwGBl5D-</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Kunii, Hiroki</creator><creator>Kubo, Tomoaki</creator><creator>Asaoka, Natsuki</creator><creator>Balboula, Ahmed Z.</creator><creator>Hamaguchi, Yu</creator><creator>Shimasaki, Tomoya</creator><creator>Bai, Hanako</creator><creator>Kawahara, Manabu</creator><creator>Kobayashi, Hisato</creator><creator>Ogawa, Hidehiko</creator><creator>Takahashi, Masashi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9663-6262</orcidid><orcidid>https://orcid.org/0000-0002-2448-915X</orcidid><orcidid>https://orcid.org/0000-0001-9940-1880</orcidid></search><sort><creationdate>20210910</creationdate><title>Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane</title><author>Kunii, Hiroki ; Kubo, Tomoaki ; Asaoka, Natsuki ; Balboula, Ahmed Z. ; Hamaguchi, Yu ; Shimasaki, Tomoya ; Bai, Hanako ; Kawahara, Manabu ; Kobayashi, Hisato ; Ogawa, Hidehiko ; Takahashi, Masashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-57432943a18938937ca194780cf07c3ebcc67c60233f590885f997b36f9f51ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cow</topic><topic>Early pregnancy detection</topic><topic>Loop-mediated isothermal amplification(LAMP)</topic><topic>Machine learning</topic><topic>Vaginal mucosa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunii, Hiroki</creatorcontrib><creatorcontrib>Kubo, Tomoaki</creatorcontrib><creatorcontrib>Asaoka, Natsuki</creatorcontrib><creatorcontrib>Balboula, Ahmed Z.</creatorcontrib><creatorcontrib>Hamaguchi, Yu</creatorcontrib><creatorcontrib>Shimasaki, Tomoya</creatorcontrib><creatorcontrib>Bai, Hanako</creatorcontrib><creatorcontrib>Kawahara, Manabu</creatorcontrib><creatorcontrib>Kobayashi, Hisato</creatorcontrib><creatorcontrib>Ogawa, Hidehiko</creatorcontrib><creatorcontrib>Takahashi, Masashi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunii, Hiroki</au><au>Kubo, Tomoaki</au><au>Asaoka, Natsuki</au><au>Balboula, Ahmed Z.</au><au>Hamaguchi, Yu</au><au>Shimasaki, Tomoya</au><au>Bai, Hanako</au><au>Kawahara, Manabu</au><au>Kobayashi, Hisato</au><au>Ogawa, Hidehiko</au><au>Takahashi, Masashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane</atitle><jtitle>Biochemical and biophysical research communications</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>569</volume><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-mediated Isothermal Amplification (RT-LAMP) and machine learning. Cows underwent artificial insemination (AI) on day 0, followed by VMM-collection on day 17–18, and pregnancy diagnosis by ultrasonography on day 30. By RNA sequencing of VMM samples, three candidate genes for pregnancy markers (ISG15 and IFIT1: up-regulated, MUC16: down-regulated) were selected. Using these genes, we performed RT-LAMP and calculated the rise-up time (RUT), the first-time absorbance exceeded 0.05 in the reaction. We next determined the cutoff value and calculated accuracy, sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) for each marker evaluation. The IFIT1 scored the best performance at 92.5% sensitivity, but specificity was 77.5%, suggesting that it is difficult to eliminate false positives. We then developed a machine learning model trained with RUT of each marker combination to predict pregnancy. The model created with the RUT of IFIT1 and MUC16 combination showed high specificity (86.7%) and sensitivity (93.3%), which were higher compared to IFIT1 alone. In conclusion, using VMM with RT-LAMP and machine learning algorithm can be used for early pregnancy detection before the return of first estrus. •Quick and high-sensitive pregnancy detection in cows by LAMP-machine learning.•Quick and non-invasive collection of vaginal mucosa for pregnancy detection.•Identification of up and downregulated genes in pregnant bovine vaginal mucosa.•A combined use of up and downregulated genes can increase prediction accuracy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.bbrc.2021.07.015</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9663-6262</orcidid><orcidid>https://orcid.org/0000-0002-2448-915X</orcidid><orcidid>https://orcid.org/0000-0001-9940-1880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2021-09, Vol.569, p.179-186
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_2551207031
source Elsevier ScienceDirect Journals
subjects Cow
Early pregnancy detection
Loop-mediated isothermal amplification(LAMP)
Machine learning
Vaginal mucosa
title Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop-mediated%20isothermal%20amplification%20(LAMP)%20and%20machine%20learning%20application%20for%20early%20pregnancy%20detection%20using%20bovine%20vaginal%20mucosal%20membrane&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kunii,%20Hiroki&rft.date=2021-09-10&rft.volume=569&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2021.07.015&rft_dat=%3Cproquest_cross%3E2551207031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551207031&rft_id=info:pmid/&rft_els_id=S0006291X21010469&rfr_iscdi=true