The numerical solution of first kind integral equations

In a recent paper, Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first kind Fredholm integral equations. The method imposes regularisation constraints directly on the Chebyshev polynomial expansion of the solution, and involves two regularisation paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1989-11, Vol.27 (3), p.363-387
Hauptverfasser: Essah, W.A., Delves, L.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 3
container_start_page 363
container_title Journal of computational and applied mathematics
container_volume 27
creator Essah, W.A.
Delves, L.M.
description In a recent paper, Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first kind Fredholm integral equations. The method imposes regularisation constraints directly on the Chebyshev polynomial expansion of the solution, and involves two regularisation parameters, Cf and r. In this paper we develop a cross-validation algorithm capable of setting these parameters automatically. We show that the cross-validation scheme, coupled with the algorithm of BD leads to a stable regularised problem; and that the method can be implemented relatively inexpensively. Finally, we give a number of numerical examples showing that the method works well in practice.
doi_str_mv 10.1016/0377-0427(89)90023-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25507155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>037704278990023X</els_id><sourcerecordid>25507155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8c0c388b982dd17fcc5599ebc1af2296545b8d268bc64ce2843aac41bb3268633</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3Y_s10WQ4hcUvFTobdlsJrqaJu1uIvjv3djSo6eBmeedYR6Ezgm-IZiIW8ykzHFB5ZXS1xpjyvLlAZoQJXVOpFSHaLJHjtFJjJ8YY6FJMUFy8QFZO6wgeGebLHbN0Puuzbo6q32Iffbl2yrzbQ_vIc1hM9hxHk_RUW2bCGe7OkVvjw-L2XM-f316md3Pc1cQ2ufKYceUKrWiVUVk7RznWkPpiK0p1YIXvFQVFap0onBAVcGsTdGyZKkpGJuiy-3edeg2A8TerHx00DS2hW6IhnKOJeE8gcUWdKGLMUBt1sGvbPgxBJvRkhkVmFGBUdr8WTLLFLvY7bcxCaiDbZ2P-6wQVGKKE3a3xSD9-u0hmOg8tA4qH8D1pur8_3d-AURteuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25507155</pqid></control><display><type>article</type><title>The numerical solution of first kind integral equations</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Essah, W.A. ; Delves, L.M.</creator><creatorcontrib>Essah, W.A. ; Delves, L.M.</creatorcontrib><description>In a recent paper, Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first kind Fredholm integral equations. The method imposes regularisation constraints directly on the Chebyshev polynomial expansion of the solution, and involves two regularisation parameters, Cf and r. In this paper we develop a cross-validation algorithm capable of setting these parameters automatically. We show that the cross-validation scheme, coupled with the algorithm of BD leads to a stable regularised problem; and that the method can be implemented relatively inexpensively. Finally, we give a number of numerical examples showing that the method works well in practice.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/0377-0427(89)90023-X</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>augmented Galerkin method ; Chebyshev series ; constrained (or regularized) solution ; cross-validation technique ; Exact sciences and technology ; expansion method ; Fredholm integral equations of the first kind ; Integral equations, integral transforms ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; numerical stability ; regularization estimators ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 1989-11, Vol.27 (3), p.363-387</ispartof><rights>1989</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8c0c388b982dd17fcc5599ebc1af2296545b8d268bc64ce2843aac41bb3268633</citedby><cites>FETCH-LOGICAL-c412t-8c0c388b982dd17fcc5599ebc1af2296545b8d268bc64ce2843aac41bb3268633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/037704278990023X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6627020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Essah, W.A.</creatorcontrib><creatorcontrib>Delves, L.M.</creatorcontrib><title>The numerical solution of first kind integral equations</title><title>Journal of computational and applied mathematics</title><description>In a recent paper, Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first kind Fredholm integral equations. The method imposes regularisation constraints directly on the Chebyshev polynomial expansion of the solution, and involves two regularisation parameters, Cf and r. In this paper we develop a cross-validation algorithm capable of setting these parameters automatically. We show that the cross-validation scheme, coupled with the algorithm of BD leads to a stable regularised problem; and that the method can be implemented relatively inexpensively. Finally, we give a number of numerical examples showing that the method works well in practice.</description><subject>augmented Galerkin method</subject><subject>Chebyshev series</subject><subject>constrained (or regularized) solution</subject><subject>cross-validation technique</subject><subject>Exact sciences and technology</subject><subject>expansion method</subject><subject>Fredholm integral equations of the first kind</subject><subject>Integral equations, integral transforms</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>numerical stability</subject><subject>regularization estimators</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYccRPQQ3Y_s10WQ4hcUvFTobdlsJrqaJu1uIvjv3djSo6eBmeedYR6Ezgm-IZiIW8ykzHFB5ZXS1xpjyvLlAZoQJXVOpFSHaLJHjtFJjJ8YY6FJMUFy8QFZO6wgeGebLHbN0Puuzbo6q32Iffbl2yrzbQ_vIc1hM9hxHk_RUW2bCGe7OkVvjw-L2XM-f316md3Pc1cQ2ufKYceUKrWiVUVk7RznWkPpiK0p1YIXvFQVFap0onBAVcGsTdGyZKkpGJuiy-3edeg2A8TerHx00DS2hW6IhnKOJeE8gcUWdKGLMUBt1sGvbPgxBJvRkhkVmFGBUdr8WTLLFLvY7bcxCaiDbZ2P-6wQVGKKE3a3xSD9-u0hmOg8tA4qH8D1pur8_3d-AURteuw</recordid><startdate>19891101</startdate><enddate>19891101</enddate><creator>Essah, W.A.</creator><creator>Delves, L.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19891101</creationdate><title>The numerical solution of first kind integral equations</title><author>Essah, W.A. ; Delves, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8c0c388b982dd17fcc5599ebc1af2296545b8d268bc64ce2843aac41bb3268633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>augmented Galerkin method</topic><topic>Chebyshev series</topic><topic>constrained (or regularized) solution</topic><topic>cross-validation technique</topic><topic>Exact sciences and technology</topic><topic>expansion method</topic><topic>Fredholm integral equations of the first kind</topic><topic>Integral equations, integral transforms</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>numerical stability</topic><topic>regularization estimators</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Essah, W.A.</creatorcontrib><creatorcontrib>Delves, L.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Essah, W.A.</au><au>Delves, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The numerical solution of first kind integral equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>1989-11-01</date><risdate>1989</risdate><volume>27</volume><issue>3</issue><spage>363</spage><epage>387</epage><pages>363-387</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In a recent paper, Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first kind Fredholm integral equations. The method imposes regularisation constraints directly on the Chebyshev polynomial expansion of the solution, and involves two regularisation parameters, Cf and r. In this paper we develop a cross-validation algorithm capable of setting these parameters automatically. We show that the cross-validation scheme, coupled with the algorithm of BD leads to a stable regularised problem; and that the method can be implemented relatively inexpensively. Finally, we give a number of numerical examples showing that the method works well in practice.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-0427(89)90023-X</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 1989-11, Vol.27 (3), p.363-387
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_25507155
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects augmented Galerkin method
Chebyshev series
constrained (or regularized) solution
cross-validation technique
Exact sciences and technology
expansion method
Fredholm integral equations of the first kind
Integral equations, integral transforms
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
numerical stability
regularization estimators
Sciences and techniques of general use
title The numerical solution of first kind integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20numerical%20solution%20of%20first%20kind%20integral%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Essah,%20W.A.&rft.date=1989-11-01&rft.volume=27&rft.issue=3&rft.spage=363&rft.epage=387&rft.pages=363-387&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/0377-0427(89)90023-X&rft_dat=%3Cproquest_cross%3E25507155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25507155&rft_id=info:pmid/&rft_els_id=037704278990023X&rfr_iscdi=true