Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources

Purpose In pharmacoepidemiology, correctly defining the exposure period of pharmacological treatment is a challenging step when information on the time in treatment is missing or incomplete. Methods In this review, we describe several methods for defining exposure to pharmacological treatments using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical pharmacology 2021-12, Vol.77 (12), p.1805-1814
Hauptverfasser: Meaidi, Marianne, Støvring, Henrik, Rostgaard, Klaus, Torp-Pedersen, Christian, Kragholm, Kristian Hay, Andersen, Morten, Sessa, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1814
container_issue 12
container_start_page 1805
container_title European journal of clinical pharmacology
container_volume 77
creator Meaidi, Marianne
Støvring, Henrik
Rostgaard, Klaus
Torp-Pedersen, Christian
Kragholm, Kristian Hay
Andersen, Morten
Sessa, Maurizio
description Purpose In pharmacoepidemiology, correctly defining the exposure period of pharmacological treatment is a challenging step when information on the time in treatment is missing or incomplete. Methods In this review, we describe several methods for defining exposure to pharmacological treatments using secondary data sources that lack such information. Results and conclusion Several methods for assessing the duration of redeemed prescriptions and combining them into temporal sequences are available. We present a set of considerations to make researchers aware of the potentials and pitfalls of these methods that may aid in minimizing biases in research using these methods. Additionally, we highlight that, to date, there is no one-size-fits-all solution. Thus, the choice of method should be based on their area of applicability combined with a careful mapping to the research scenario under investigation.
doi_str_mv 10.1007/s00228-021-03188-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550629429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596178877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9944c670f93968cd0ba56c2948f11ca8a9425147acdb4829deeec7aca723dad43</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6BzxIwIuX1spHd5KjLH7Bgh70HDJJ9Uwv3Z021Q367804swoePIVKPe9bVbyMPRfwWgCYNwQgpW1AigaUsLZxD9hOaCUbAVo8ZDuo303nDFyxJ0R3AKJ1oB6zK6WlNtLAjv34cgxlCjHjMiSchjzmwxDDyCdcjzkR73PhMU_Ltg7zga9H5GkrYR3yzHPPl4v6XrUUpFiG5dQnvtFJQxjznEL5yVNYA6e8lYj0lD3qw0j47PJes2_v3329-djcfv7w6ebtbROVadfGOa1jZ6B3ynU2JtiHtovSadsLEYMNTstWaBNi2msrXULEWKtgpEohaXXNXp19l5K_b0irnwaKOI5hxryRl20LXfWTrqIv_0Hv6q5z3a5SrhPGWmMqJc9ULJmoYO-XMkz1PC_An3Lx51x8zcX_zsWfrF9crLf9hOmP5D6ICqgzQLU1H7D8nf0f218Toptf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596178877</pqid></control><display><type>article</type><title>Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Meaidi, Marianne ; Støvring, Henrik ; Rostgaard, Klaus ; Torp-Pedersen, Christian ; Kragholm, Kristian Hay ; Andersen, Morten ; Sessa, Maurizio</creator><creatorcontrib>Meaidi, Marianne ; Støvring, Henrik ; Rostgaard, Klaus ; Torp-Pedersen, Christian ; Kragholm, Kristian Hay ; Andersen, Morten ; Sessa, Maurizio</creatorcontrib><description>Purpose In pharmacoepidemiology, correctly defining the exposure period of pharmacological treatment is a challenging step when information on the time in treatment is missing or incomplete. Methods In this review, we describe several methods for defining exposure to pharmacological treatments using secondary data sources that lack such information. Results and conclusion Several methods for assessing the duration of redeemed prescriptions and combining them into temporal sequences are available. We present a set of considerations to make researchers aware of the potentials and pitfalls of these methods that may aid in minimizing biases in research using these methods. Additionally, we highlight that, to date, there is no one-size-fits-all solution. Thus, the choice of method should be based on their area of applicability combined with a careful mapping to the research scenario under investigation.</description><identifier>ISSN: 0031-6970</identifier><identifier>EISSN: 1432-1041</identifier><identifier>DOI: 10.1007/s00228-021-03188-9</identifier><identifier>PMID: 34247270</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Data Collection - methods ; Drug dosages ; Drug Prescriptions - statistics &amp; numerical data ; Drug therapy ; Drug Utilization ; Humans ; Medical research ; Methods ; Pharmacoepidemiology - methods ; Pharmacology ; Pharmacology/Toxicology ; Prescription Drugs - administration &amp; dosage ; Prescriptions ; Review</subject><ispartof>European journal of clinical pharmacology, 2021-12, Vol.77 (12), p.1805-1814</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9944c670f93968cd0ba56c2948f11ca8a9425147acdb4829deeec7aca723dad43</citedby><cites>FETCH-LOGICAL-c375t-9944c670f93968cd0ba56c2948f11ca8a9425147acdb4829deeec7aca723dad43</cites><orcidid>0000-0003-0874-4744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00228-021-03188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00228-021-03188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34247270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meaidi, Marianne</creatorcontrib><creatorcontrib>Støvring, Henrik</creatorcontrib><creatorcontrib>Rostgaard, Klaus</creatorcontrib><creatorcontrib>Torp-Pedersen, Christian</creatorcontrib><creatorcontrib>Kragholm, Kristian Hay</creatorcontrib><creatorcontrib>Andersen, Morten</creatorcontrib><creatorcontrib>Sessa, Maurizio</creatorcontrib><title>Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources</title><title>European journal of clinical pharmacology</title><addtitle>Eur J Clin Pharmacol</addtitle><addtitle>Eur J Clin Pharmacol</addtitle><description>Purpose In pharmacoepidemiology, correctly defining the exposure period of pharmacological treatment is a challenging step when information on the time in treatment is missing or incomplete. Methods In this review, we describe several methods for defining exposure to pharmacological treatments using secondary data sources that lack such information. Results and conclusion Several methods for assessing the duration of redeemed prescriptions and combining them into temporal sequences are available. We present a set of considerations to make researchers aware of the potentials and pitfalls of these methods that may aid in minimizing biases in research using these methods. Additionally, we highlight that, to date, there is no one-size-fits-all solution. Thus, the choice of method should be based on their area of applicability combined with a careful mapping to the research scenario under investigation.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Data Collection - methods</subject><subject>Drug dosages</subject><subject>Drug Prescriptions - statistics &amp; numerical data</subject><subject>Drug therapy</subject><subject>Drug Utilization</subject><subject>Humans</subject><subject>Medical research</subject><subject>Methods</subject><subject>Pharmacoepidemiology - methods</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Prescription Drugs - administration &amp; dosage</subject><subject>Prescriptions</subject><subject>Review</subject><issn>0031-6970</issn><issn>1432-1041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kU2LFDEQhoMo7rj6BzxIwIuX1spHd5KjLH7Bgh70HDJJ9Uwv3Z021Q367804swoePIVKPe9bVbyMPRfwWgCYNwQgpW1AigaUsLZxD9hOaCUbAVo8ZDuo303nDFyxJ0R3AKJ1oB6zK6WlNtLAjv34cgxlCjHjMiSchjzmwxDDyCdcjzkR73PhMU_Ltg7zga9H5GkrYR3yzHPPl4v6XrUUpFiG5dQnvtFJQxjznEL5yVNYA6e8lYj0lD3qw0j47PJes2_v3329-djcfv7w6ebtbROVadfGOa1jZ6B3ynU2JtiHtovSadsLEYMNTstWaBNi2msrXULEWKtgpEohaXXNXp19l5K_b0irnwaKOI5hxryRl20LXfWTrqIv_0Hv6q5z3a5SrhPGWmMqJc9ULJmoYO-XMkz1PC_An3Lx51x8zcX_zsWfrF9crLf9hOmP5D6ICqgzQLU1H7D8nf0f218Toptf</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Meaidi, Marianne</creator><creator>Støvring, Henrik</creator><creator>Rostgaard, Klaus</creator><creator>Torp-Pedersen, Christian</creator><creator>Kragholm, Kristian Hay</creator><creator>Andersen, Morten</creator><creator>Sessa, Maurizio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0874-4744</orcidid></search><sort><creationdate>20211201</creationdate><title>Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources</title><author>Meaidi, Marianne ; Støvring, Henrik ; Rostgaard, Klaus ; Torp-Pedersen, Christian ; Kragholm, Kristian Hay ; Andersen, Morten ; Sessa, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9944c670f93968cd0ba56c2948f11ca8a9425147acdb4829deeec7aca723dad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Data Collection - methods</topic><topic>Drug dosages</topic><topic>Drug Prescriptions - statistics &amp; numerical data</topic><topic>Drug therapy</topic><topic>Drug Utilization</topic><topic>Humans</topic><topic>Medical research</topic><topic>Methods</topic><topic>Pharmacoepidemiology - methods</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Prescription Drugs - administration &amp; dosage</topic><topic>Prescriptions</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meaidi, Marianne</creatorcontrib><creatorcontrib>Støvring, Henrik</creatorcontrib><creatorcontrib>Rostgaard, Klaus</creatorcontrib><creatorcontrib>Torp-Pedersen, Christian</creatorcontrib><creatorcontrib>Kragholm, Kristian Hay</creatorcontrib><creatorcontrib>Andersen, Morten</creatorcontrib><creatorcontrib>Sessa, Maurizio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meaidi, Marianne</au><au>Støvring, Henrik</au><au>Rostgaard, Klaus</au><au>Torp-Pedersen, Christian</au><au>Kragholm, Kristian Hay</au><au>Andersen, Morten</au><au>Sessa, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources</atitle><jtitle>European journal of clinical pharmacology</jtitle><stitle>Eur J Clin Pharmacol</stitle><addtitle>Eur J Clin Pharmacol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>77</volume><issue>12</issue><spage>1805</spage><epage>1814</epage><pages>1805-1814</pages><issn>0031-6970</issn><eissn>1432-1041</eissn><abstract>Purpose In pharmacoepidemiology, correctly defining the exposure period of pharmacological treatment is a challenging step when information on the time in treatment is missing or incomplete. Methods In this review, we describe several methods for defining exposure to pharmacological treatments using secondary data sources that lack such information. Results and conclusion Several methods for assessing the duration of redeemed prescriptions and combining them into temporal sequences are available. We present a set of considerations to make researchers aware of the potentials and pitfalls of these methods that may aid in minimizing biases in research using these methods. Additionally, we highlight that, to date, there is no one-size-fits-all solution. Thus, the choice of method should be based on their area of applicability combined with a careful mapping to the research scenario under investigation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34247270</pmid><doi>10.1007/s00228-021-03188-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0874-4744</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-6970
ispartof European journal of clinical pharmacology, 2021-12, Vol.77 (12), p.1805-1814
issn 0031-6970
1432-1041
language eng
recordid cdi_proquest_miscellaneous_2550629429
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedicine
Data Collection - methods
Drug dosages
Drug Prescriptions - statistics & numerical data
Drug therapy
Drug Utilization
Humans
Medical research
Methods
Pharmacoepidemiology - methods
Pharmacology
Pharmacology/Toxicology
Prescription Drugs - administration & dosage
Prescriptions
Review
title Pharmacoepidemiological methods for computing the duration of pharmacological prescriptions using secondary data sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacoepidemiological%20methods%20for%20computing%20the%20duration%20of%20pharmacological%20prescriptions%20using%20secondary%20data%20sources&rft.jtitle=European%20journal%20of%20clinical%20pharmacology&rft.au=Meaidi,%20Marianne&rft.date=2021-12-01&rft.volume=77&rft.issue=12&rft.spage=1805&rft.epage=1814&rft.pages=1805-1814&rft.issn=0031-6970&rft.eissn=1432-1041&rft_id=info:doi/10.1007/s00228-021-03188-9&rft_dat=%3Cproquest_cross%3E2596178877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596178877&rft_id=info:pmid/34247270&rfr_iscdi=true