A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule
The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα‐antagonists is Etanercept, a dimeric TNF‐R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trim...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2021-11, Vol.89 (11), p.1557-1564 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1564 |
---|---|
container_issue | 11 |
container_start_page | 1557 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 89 |
creator | Contreras, María A. Macaya, Luis Manrique, Viana Camacho, Frank González, Alain Montesinos, Raquel Toledo, Jorge R. Sánchez, Oliberto |
description | The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα‐antagonists is Etanercept, a dimeric TNF‐R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF‐R2 ectodomain could be an innovative TNFα‐antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF‐R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2‐TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography‐high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα‐induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti‐inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα‐antagonist agent. |
doi_str_mv | 10.1002/prot.26177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550625985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550625985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-1478ee5345ea03212ffb17b6ca138456f71feb1b4d77b8574d04b2481fdc49e43</originalsourceid><addsrcrecordid>eNqN0c9PFDEUB_DGSGRFL_wBZhIvRjLYn9POkWxASBAMWc-TtvuKxc50nXYg3PwT_Bv9S-iyKwcPhl7aJp_XvPctQvsEHxKM6afVGPMhbYiUL9CM4FbWmDD-Es2wUrJmQold9DqlG4xx07LmFdplnArcCDpDX46qPPpbHWDI1eLi5M-v31e00qnS1QB3VZ76OJaTHWPyqXLa5nLXYfVdF2lCtD_8cF31MYCdArxBO06HBG-3-x76dnK8mJ_W55efz-ZH57VlQsqacKkABOMCNGaUUOcMkaaxmjDFReMkcWCI4UspjRKSLzE3lCvilpa3wNke-rB5t4z-c4KUu94nCyHoAeKUOirKeFS0ShT6_h96E6dxKN0VJVtMVMNUUR83aj1oGsF1q9H3erzvCO7WIXfrkLvHkAt-t31yMj0sn-jfVAs42IA7MNEl62Gw8MTW3yA5bgsuixStnq_nPuvs4zCP05BLKdmW-gD3_-m5-3p1udh0_wDKxaf2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579018638</pqid></control><display><type>article</type><title>A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Contreras, María A. ; Macaya, Luis ; Manrique, Viana ; Camacho, Frank ; González, Alain ; Montesinos, Raquel ; Toledo, Jorge R. ; Sánchez, Oliberto</creator><creatorcontrib>Contreras, María A. ; Macaya, Luis ; Manrique, Viana ; Camacho, Frank ; González, Alain ; Montesinos, Raquel ; Toledo, Jorge R. ; Sánchez, Oliberto</creatorcontrib><description>The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα‐antagonists is Etanercept, a dimeric TNF‐R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF‐R2 ectodomain could be an innovative TNFα‐antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF‐R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2‐TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography‐high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα‐induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti‐inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα‐antagonist agent.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26177</identifier><identifier>PMID: 34250652</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Affinity chromatography ; Antagonists ; Anti-Inflammatory Agents - chemistry ; Anti-Inflammatory Agents - metabolism ; Anti-Inflammatory Agents - pharmacology ; Biochemistry & Molecular Biology ; Biophysics ; Cell Survival - drug effects ; Chromatography ; Collagen ; Collagen - genetics ; Collagen - metabolism ; Cytotoxicity ; Dimers ; Endotoxins - antagonists & inhibitors ; Endotoxins - metabolism ; Endotoxins - toxicity ; Etanercept ; Etanercept - chemistry ; Etanercept - metabolism ; Etanercept - pharmacology ; Gene Expression ; HEK293 Cells ; High performance liquid chromatography ; Humans ; Inflammatory diseases ; Life Sciences & Biomedicine ; Liquid chromatography ; Models, Molecular ; Monomers ; Necrosis ; Neutralization ; Protein Binding ; Protein Conformation ; Protein Domains ; protein engineering ; Protein Engineering - methods ; Protein Multimerization ; protein–protein interaction ; Receptors, Tumor Necrosis Factor, Type II - genetics ; Receptors, Tumor Necrosis Factor, Type II - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Recombinant Fusion Proteins - pharmacology ; Science & Technology ; Size exclusion chromatography ; Thermophoresis ; Toxicity ; Trimers ; tumor necrosis factor alpha ; Tumor Necrosis Factor-alpha - antagonists & inhibitors ; Tumor Necrosis Factor-alpha - metabolism ; Tumor Necrosis Factor-alpha - toxicity ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Proteins, structure, function, and bioinformatics, 2021-11, Vol.89 (11), p.1557-1564</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674092500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3577-1478ee5345ea03212ffb17b6ca138456f71feb1b4d77b8574d04b2481fdc49e43</citedby><cites>FETCH-LOGICAL-c3577-1478ee5345ea03212ffb17b6ca138456f71feb1b4d77b8574d04b2481fdc49e43</cites><orcidid>0000-0003-0140-1861 ; 0000-0002-9744-8674 ; 0000-0002-1804-8331 ; 0000-0003-2247-7160 ; 0000-0002-9879-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.26177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.26177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,39257,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34250652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contreras, María A.</creatorcontrib><creatorcontrib>Macaya, Luis</creatorcontrib><creatorcontrib>Manrique, Viana</creatorcontrib><creatorcontrib>Camacho, Frank</creatorcontrib><creatorcontrib>González, Alain</creatorcontrib><creatorcontrib>Montesinos, Raquel</creatorcontrib><creatorcontrib>Toledo, Jorge R.</creatorcontrib><creatorcontrib>Sánchez, Oliberto</creatorcontrib><title>A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>PROTEINS</addtitle><addtitle>Proteins</addtitle><description>The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα‐antagonists is Etanercept, a dimeric TNF‐R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF‐R2 ectodomain could be an innovative TNFα‐antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF‐R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2‐TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography‐high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα‐induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti‐inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα‐antagonist agent.</description><subject>Affinity chromatography</subject><subject>Antagonists</subject><subject>Anti-Inflammatory Agents - chemistry</subject><subject>Anti-Inflammatory Agents - metabolism</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biophysics</subject><subject>Cell Survival - drug effects</subject><subject>Chromatography</subject><subject>Collagen</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Cytotoxicity</subject><subject>Dimers</subject><subject>Endotoxins - antagonists & inhibitors</subject><subject>Endotoxins - metabolism</subject><subject>Endotoxins - toxicity</subject><subject>Etanercept</subject><subject>Etanercept - chemistry</subject><subject>Etanercept - metabolism</subject><subject>Etanercept - pharmacology</subject><subject>Gene Expression</subject><subject>HEK293 Cells</subject><subject>High performance liquid chromatography</subject><subject>Humans</subject><subject>Inflammatory diseases</subject><subject>Life Sciences & Biomedicine</subject><subject>Liquid chromatography</subject><subject>Models, Molecular</subject><subject>Monomers</subject><subject>Necrosis</subject><subject>Neutralization</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>protein engineering</subject><subject>Protein Engineering - methods</subject><subject>Protein Multimerization</subject><subject>protein–protein interaction</subject><subject>Receptors, Tumor Necrosis Factor, Type II - genetics</subject><subject>Receptors, Tumor Necrosis Factor, Type II - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Science & Technology</subject><subject>Size exclusion chromatography</subject><subject>Thermophoresis</subject><subject>Toxicity</subject><subject>Trimers</subject><subject>tumor necrosis factor alpha</subject><subject>Tumor Necrosis Factor-alpha - antagonists & inhibitors</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor Necrosis Factor-alpha - toxicity</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c9PFDEUB_DGSGRFL_wBZhIvRjLYn9POkWxASBAMWc-TtvuKxc50nXYg3PwT_Bv9S-iyKwcPhl7aJp_XvPctQvsEHxKM6afVGPMhbYiUL9CM4FbWmDD-Es2wUrJmQold9DqlG4xx07LmFdplnArcCDpDX46qPPpbHWDI1eLi5M-v31e00qnS1QB3VZ76OJaTHWPyqXLa5nLXYfVdF2lCtD_8cF31MYCdArxBO06HBG-3-x76dnK8mJ_W55efz-ZH57VlQsqacKkABOMCNGaUUOcMkaaxmjDFReMkcWCI4UspjRKSLzE3lCvilpa3wNke-rB5t4z-c4KUu94nCyHoAeKUOirKeFS0ShT6_h96E6dxKN0VJVtMVMNUUR83aj1oGsF1q9H3erzvCO7WIXfrkLvHkAt-t31yMj0sn-jfVAs42IA7MNEl62Gw8MTW3yA5bgsuixStnq_nPuvs4zCP05BLKdmW-gD3_-m5-3p1udh0_wDKxaf2</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Contreras, María A.</creator><creator>Macaya, Luis</creator><creator>Manrique, Viana</creator><creator>Camacho, Frank</creator><creator>González, Alain</creator><creator>Montesinos, Raquel</creator><creator>Toledo, Jorge R.</creator><creator>Sánchez, Oliberto</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0140-1861</orcidid><orcidid>https://orcid.org/0000-0002-9744-8674</orcidid><orcidid>https://orcid.org/0000-0002-1804-8331</orcidid><orcidid>https://orcid.org/0000-0003-2247-7160</orcidid><orcidid>https://orcid.org/0000-0002-9879-7710</orcidid></search><sort><creationdate>202111</creationdate><title>A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule</title><author>Contreras, María A. ; Macaya, Luis ; Manrique, Viana ; Camacho, Frank ; González, Alain ; Montesinos, Raquel ; Toledo, Jorge R. ; Sánchez, Oliberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-1478ee5345ea03212ffb17b6ca138456f71feb1b4d77b8574d04b2481fdc49e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity chromatography</topic><topic>Antagonists</topic><topic>Anti-Inflammatory Agents - chemistry</topic><topic>Anti-Inflammatory Agents - metabolism</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biophysics</topic><topic>Cell Survival - drug effects</topic><topic>Chromatography</topic><topic>Collagen</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Cytotoxicity</topic><topic>Dimers</topic><topic>Endotoxins - antagonists & inhibitors</topic><topic>Endotoxins - metabolism</topic><topic>Endotoxins - toxicity</topic><topic>Etanercept</topic><topic>Etanercept - chemistry</topic><topic>Etanercept - metabolism</topic><topic>Etanercept - pharmacology</topic><topic>Gene Expression</topic><topic>HEK293 Cells</topic><topic>High performance liquid chromatography</topic><topic>Humans</topic><topic>Inflammatory diseases</topic><topic>Life Sciences & Biomedicine</topic><topic>Liquid chromatography</topic><topic>Models, Molecular</topic><topic>Monomers</topic><topic>Necrosis</topic><topic>Neutralization</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>protein engineering</topic><topic>Protein Engineering - methods</topic><topic>Protein Multimerization</topic><topic>protein–protein interaction</topic><topic>Receptors, Tumor Necrosis Factor, Type II - genetics</topic><topic>Receptors, Tumor Necrosis Factor, Type II - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Science & Technology</topic><topic>Size exclusion chromatography</topic><topic>Thermophoresis</topic><topic>Toxicity</topic><topic>Trimers</topic><topic>tumor necrosis factor alpha</topic><topic>Tumor Necrosis Factor-alpha - antagonists & inhibitors</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor Necrosis Factor-alpha - toxicity</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras, María A.</creatorcontrib><creatorcontrib>Macaya, Luis</creatorcontrib><creatorcontrib>Manrique, Viana</creatorcontrib><creatorcontrib>Camacho, Frank</creatorcontrib><creatorcontrib>González, Alain</creatorcontrib><creatorcontrib>Montesinos, Raquel</creatorcontrib><creatorcontrib>Toledo, Jorge R.</creatorcontrib><creatorcontrib>Sánchez, Oliberto</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras, María A.</au><au>Macaya, Luis</au><au>Manrique, Viana</au><au>Camacho, Frank</au><au>González, Alain</au><au>Montesinos, Raquel</au><au>Toledo, Jorge R.</au><au>Sánchez, Oliberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><stitle>PROTEINS</stitle><addtitle>Proteins</addtitle><date>2021-11</date><risdate>2021</risdate><volume>89</volume><issue>11</issue><spage>1557</spage><epage>1564</epage><pages>1557-1564</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα‐antagonists is Etanercept, a dimeric TNF‐R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF‐R2 ectodomain could be an innovative TNFα‐antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF‐R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2‐TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography‐high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα‐induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti‐inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα‐antagonist agent.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34250652</pmid><doi>10.1002/prot.26177</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0140-1861</orcidid><orcidid>https://orcid.org/0000-0002-9744-8674</orcidid><orcidid>https://orcid.org/0000-0002-1804-8331</orcidid><orcidid>https://orcid.org/0000-0003-2247-7160</orcidid><orcidid>https://orcid.org/0000-0002-9879-7710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2021-11, Vol.89 (11), p.1557-1564 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_2550625985 |
source | Wiley-Blackwell Journals; MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Affinity chromatography Antagonists Anti-Inflammatory Agents - chemistry Anti-Inflammatory Agents - metabolism Anti-Inflammatory Agents - pharmacology Biochemistry & Molecular Biology Biophysics Cell Survival - drug effects Chromatography Collagen Collagen - genetics Collagen - metabolism Cytotoxicity Dimers Endotoxins - antagonists & inhibitors Endotoxins - metabolism Endotoxins - toxicity Etanercept Etanercept - chemistry Etanercept - metabolism Etanercept - pharmacology Gene Expression HEK293 Cells High performance liquid chromatography Humans Inflammatory diseases Life Sciences & Biomedicine Liquid chromatography Models, Molecular Monomers Necrosis Neutralization Protein Binding Protein Conformation Protein Domains protein engineering Protein Engineering - methods Protein Multimerization protein–protein interaction Receptors, Tumor Necrosis Factor, Type II - genetics Receptors, Tumor Necrosis Factor, Type II - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Recombinant Fusion Proteins - pharmacology Science & Technology Size exclusion chromatography Thermophoresis Toxicity Trimers tumor necrosis factor alpha Tumor Necrosis Factor-alpha - antagonists & inhibitors Tumor Necrosis Factor-alpha - metabolism Tumor Necrosis Factor-alpha - toxicity Tumor necrosis factor-TNF Tumor necrosis factor-α |
title | A trivalent TNF‐R2 as a new tumor necrosis factor alpha‐blocking molecule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20trivalent%20TNF%E2%80%90R2%20as%20a%20new%20tumor%20necrosis%20factor%20alpha%E2%80%90blocking%20molecule&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Contreras,%20Mar%C3%ADa%20A.&rft.date=2021-11&rft.volume=89&rft.issue=11&rft.spage=1557&rft.epage=1564&rft.pages=1557-1564&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26177&rft_dat=%3Cproquest_pubme%3E2550625985%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579018638&rft_id=info:pmid/34250652&rfr_iscdi=true |