Management algorithms and artificial intelligence systems for cardiopulmonary bypass
This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Differe...
Gespeichert in:
Veröffentlicht in: | Perfusion 2022-11, Vol.37 (8), p.765-772 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 8 |
container_start_page | 765 |
container_title | Perfusion |
container_volume | 37 |
creator | Condello, Ignazio Santarpino, Giuseppe Nasso, Giuseppe Moscarelli, Marco Fiore, Flavio Speziale, Giuseppe |
description | This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management. |
doi_str_mv | 10.1177/02676591211030762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550625191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02676591211030762</sage_id><sourcerecordid>2729458599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqXwA1hQJBaWFNvxIx4R4iUVsRSJLXIcu7hK7GAnQ_89rlpAAjHd4X7n3HMPAOcIzhHi_BpixhkVCCMEC8gZPgBTRDjPEUJvh2C63edbYAJOYlxDCAkhxTGYFARTWNJyCpbP0smV7rQbMtmufLDDexcz6ZpMhsEaq6xsM-sG3bZ2pZ3SWdzEQSfG-JApGRrr-7HtvJNhk9WbXsZ4Co6MbKM-288ZeL2_W94-5ouXh6fbm0WusCiHXCjOaoMKSKARRja0gKYhVDOlqYbacEGQErVqWI2JMoXiRHDKJOdKMUnKYgaudr598B-jjkPV2ahSUum0H2OFKYUMUyRQQi9_oWs_BpfSVZhjQWhJhUgU2lEq-BiDNlUfbJceqxCstpVXfypPmou981h3uvlWfHWcgPkOiKnon7P_O34CCuWJ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729458599</pqid></control><display><type>article</type><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><source>SAGE Journals Online</source><creator>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</creator><creatorcontrib>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</creatorcontrib><description>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</description><identifier>ISSN: 0267-6591</identifier><identifier>EISSN: 1477-111X</identifier><identifier>DOI: 10.1177/02676591211030762</identifier><identifier>PMID: 34250858</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Artificial intelligence ; Error reduction ; Heart surgery ; Human error ; Management ; Optimization ; Parameter identification</subject><ispartof>Perfusion, 2022-11, Vol.37 (8), p.765-772</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</citedby><cites>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</cites><orcidid>0000-0002-8373-8486 ; 0000-0003-1192-1908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02676591211030762$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02676591211030762$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,780,784,792,21810,27913,27915,27916,43612,43613</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34250858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Condello, Ignazio</creatorcontrib><creatorcontrib>Santarpino, Giuseppe</creatorcontrib><creatorcontrib>Nasso, Giuseppe</creatorcontrib><creatorcontrib>Moscarelli, Marco</creatorcontrib><creatorcontrib>Fiore, Flavio</creatorcontrib><creatorcontrib>Speziale, Giuseppe</creatorcontrib><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><title>Perfusion</title><addtitle>Perfusion</addtitle><description>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Error reduction</subject><subject>Heart surgery</subject><subject>Human error</subject><subject>Management</subject><subject>Optimization</subject><subject>Parameter identification</subject><issn>0267-6591</issn><issn>1477-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqXwA1hQJBaWFNvxIx4R4iUVsRSJLXIcu7hK7GAnQ_89rlpAAjHd4X7n3HMPAOcIzhHi_BpixhkVCCMEC8gZPgBTRDjPEUJvh2C63edbYAJOYlxDCAkhxTGYFARTWNJyCpbP0smV7rQbMtmufLDDexcz6ZpMhsEaq6xsM-sG3bZ2pZ3SWdzEQSfG-JApGRrr-7HtvJNhk9WbXsZ4Co6MbKM-288ZeL2_W94-5ouXh6fbm0WusCiHXCjOaoMKSKARRja0gKYhVDOlqYbacEGQErVqWI2JMoXiRHDKJOdKMUnKYgaudr598B-jjkPV2ahSUum0H2OFKYUMUyRQQi9_oWs_BpfSVZhjQWhJhUgU2lEq-BiDNlUfbJceqxCstpVXfypPmou981h3uvlWfHWcgPkOiKnon7P_O34CCuWJ0A</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Condello, Ignazio</creator><creator>Santarpino, Giuseppe</creator><creator>Nasso, Giuseppe</creator><creator>Moscarelli, Marco</creator><creator>Fiore, Flavio</creator><creator>Speziale, Giuseppe</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8373-8486</orcidid><orcidid>https://orcid.org/0000-0003-1192-1908</orcidid></search><sort><creationdate>20221101</creationdate><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><author>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Error reduction</topic><topic>Heart surgery</topic><topic>Human error</topic><topic>Management</topic><topic>Optimization</topic><topic>Parameter identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Condello, Ignazio</creatorcontrib><creatorcontrib>Santarpino, Giuseppe</creatorcontrib><creatorcontrib>Nasso, Giuseppe</creatorcontrib><creatorcontrib>Moscarelli, Marco</creatorcontrib><creatorcontrib>Fiore, Flavio</creatorcontrib><creatorcontrib>Speziale, Giuseppe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Perfusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Condello, Ignazio</au><au>Santarpino, Giuseppe</au><au>Nasso, Giuseppe</au><au>Moscarelli, Marco</au><au>Fiore, Flavio</au><au>Speziale, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</atitle><jtitle>Perfusion</jtitle><addtitle>Perfusion</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>37</volume><issue>8</issue><spage>765</spage><epage>772</epage><pages>765-772</pages><issn>0267-6591</issn><eissn>1477-111X</eissn><abstract>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>34250858</pmid><doi>10.1177/02676591211030762</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8373-8486</orcidid><orcidid>https://orcid.org/0000-0003-1192-1908</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-6591 |
ispartof | Perfusion, 2022-11, Vol.37 (8), p.765-772 |
issn | 0267-6591 1477-111X |
language | eng |
recordid | cdi_proquest_miscellaneous_2550625191 |
source | SAGE Journals Online |
subjects | Algorithms Artificial intelligence Error reduction Heart surgery Human error Management Optimization Parameter identification |
title | Management algorithms and artificial intelligence systems for cardiopulmonary bypass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Management%20algorithms%20and%20artificial%20intelligence%20systems%20for%20cardiopulmonary%20bypass&rft.jtitle=Perfusion&rft.au=Condello,%20Ignazio&rft.date=2022-11-01&rft.volume=37&rft.issue=8&rft.spage=765&rft.epage=772&rft.pages=765-772&rft.issn=0267-6591&rft.eissn=1477-111X&rft_id=info:doi/10.1177/02676591211030762&rft_dat=%3Cproquest_cross%3E2729458599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729458599&rft_id=info:pmid/34250858&rft_sage_id=10.1177_02676591211030762&rfr_iscdi=true |