Management algorithms and artificial intelligence systems for cardiopulmonary bypass

This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Perfusion 2022-11, Vol.37 (8), p.765-772
Hauptverfasser: Condello, Ignazio, Santarpino, Giuseppe, Nasso, Giuseppe, Moscarelli, Marco, Fiore, Flavio, Speziale, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 8
container_start_page 765
container_title Perfusion
container_volume 37
creator Condello, Ignazio
Santarpino, Giuseppe
Nasso, Giuseppe
Moscarelli, Marco
Fiore, Flavio
Speziale, Giuseppe
description This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.
doi_str_mv 10.1177/02676591211030762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550625191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02676591211030762</sage_id><sourcerecordid>2729458599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqXwA1hQJBaWFNvxIx4R4iUVsRSJLXIcu7hK7GAnQ_89rlpAAjHd4X7n3HMPAOcIzhHi_BpixhkVCCMEC8gZPgBTRDjPEUJvh2C63edbYAJOYlxDCAkhxTGYFARTWNJyCpbP0smV7rQbMtmufLDDexcz6ZpMhsEaq6xsM-sG3bZ2pZ3SWdzEQSfG-JApGRrr-7HtvJNhk9WbXsZ4Co6MbKM-288ZeL2_W94-5ouXh6fbm0WusCiHXCjOaoMKSKARRja0gKYhVDOlqYbacEGQErVqWI2JMoXiRHDKJOdKMUnKYgaudr598B-jjkPV2ahSUum0H2OFKYUMUyRQQi9_oWs_BpfSVZhjQWhJhUgU2lEq-BiDNlUfbJceqxCstpVXfypPmou981h3uvlWfHWcgPkOiKnon7P_O34CCuWJ0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729458599</pqid></control><display><type>article</type><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><source>SAGE Journals Online</source><creator>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</creator><creatorcontrib>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</creatorcontrib><description>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</description><identifier>ISSN: 0267-6591</identifier><identifier>EISSN: 1477-111X</identifier><identifier>DOI: 10.1177/02676591211030762</identifier><identifier>PMID: 34250858</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Artificial intelligence ; Error reduction ; Heart surgery ; Human error ; Management ; Optimization ; Parameter identification</subject><ispartof>Perfusion, 2022-11, Vol.37 (8), p.765-772</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</citedby><cites>FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</cites><orcidid>0000-0002-8373-8486 ; 0000-0003-1192-1908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02676591211030762$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02676591211030762$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,780,784,792,21810,27913,27915,27916,43612,43613</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34250858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Condello, Ignazio</creatorcontrib><creatorcontrib>Santarpino, Giuseppe</creatorcontrib><creatorcontrib>Nasso, Giuseppe</creatorcontrib><creatorcontrib>Moscarelli, Marco</creatorcontrib><creatorcontrib>Fiore, Flavio</creatorcontrib><creatorcontrib>Speziale, Giuseppe</creatorcontrib><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><title>Perfusion</title><addtitle>Perfusion</addtitle><description>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Error reduction</subject><subject>Heart surgery</subject><subject>Human error</subject><subject>Management</subject><subject>Optimization</subject><subject>Parameter identification</subject><issn>0267-6591</issn><issn>1477-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqXwA1hQJBaWFNvxIx4R4iUVsRSJLXIcu7hK7GAnQ_89rlpAAjHd4X7n3HMPAOcIzhHi_BpixhkVCCMEC8gZPgBTRDjPEUJvh2C63edbYAJOYlxDCAkhxTGYFARTWNJyCpbP0smV7rQbMtmufLDDexcz6ZpMhsEaq6xsM-sG3bZ2pZ3SWdzEQSfG-JApGRrr-7HtvJNhk9WbXsZ4Co6MbKM-288ZeL2_W94-5ouXh6fbm0WusCiHXCjOaoMKSKARRja0gKYhVDOlqYbacEGQErVqWI2JMoXiRHDKJOdKMUnKYgaudr598B-jjkPV2ahSUum0H2OFKYUMUyRQQi9_oWs_BpfSVZhjQWhJhUgU2lEq-BiDNlUfbJceqxCstpVXfypPmou981h3uvlWfHWcgPkOiKnon7P_O34CCuWJ0A</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Condello, Ignazio</creator><creator>Santarpino, Giuseppe</creator><creator>Nasso, Giuseppe</creator><creator>Moscarelli, Marco</creator><creator>Fiore, Flavio</creator><creator>Speziale, Giuseppe</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8373-8486</orcidid><orcidid>https://orcid.org/0000-0003-1192-1908</orcidid></search><sort><creationdate>20221101</creationdate><title>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</title><author>Condello, Ignazio ; Santarpino, Giuseppe ; Nasso, Giuseppe ; Moscarelli, Marco ; Fiore, Flavio ; Speziale, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9c76bf13040f9fad530fd45e6ce5e0ef7941c9bcd6b24cf3c749756a77cc6a483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Error reduction</topic><topic>Heart surgery</topic><topic>Human error</topic><topic>Management</topic><topic>Optimization</topic><topic>Parameter identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Condello, Ignazio</creatorcontrib><creatorcontrib>Santarpino, Giuseppe</creatorcontrib><creatorcontrib>Nasso, Giuseppe</creatorcontrib><creatorcontrib>Moscarelli, Marco</creatorcontrib><creatorcontrib>Fiore, Flavio</creatorcontrib><creatorcontrib>Speziale, Giuseppe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Perfusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Condello, Ignazio</au><au>Santarpino, Giuseppe</au><au>Nasso, Giuseppe</au><au>Moscarelli, Marco</au><au>Fiore, Flavio</au><au>Speziale, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Management algorithms and artificial intelligence systems for cardiopulmonary bypass</atitle><jtitle>Perfusion</jtitle><addtitle>Perfusion</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>37</volume><issue>8</issue><spage>765</spage><epage>772</epage><pages>765-772</pages><issn>0267-6591</issn><eissn>1477-111X</eissn><abstract>This article introduces management algorithms to support operators in choosing the best strategy for metabolic management during cardiopulmonary bypass using artificial intelligence systems. We developed algorithms for the identification of the optimal way for assessing metabolic parameters. Different management algorithms for extracorporeal procedures interfaced with metabolic monitoring systems already exist on the market and are applied in clinical practice. These algorithms could provide guidance for selecting the best metabolic strategy with the aim at reducing human error and optimizing management.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>34250858</pmid><doi>10.1177/02676591211030762</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8373-8486</orcidid><orcidid>https://orcid.org/0000-0003-1192-1908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0267-6591
ispartof Perfusion, 2022-11, Vol.37 (8), p.765-772
issn 0267-6591
1477-111X
language eng
recordid cdi_proquest_miscellaneous_2550625191
source SAGE Journals Online
subjects Algorithms
Artificial intelligence
Error reduction
Heart surgery
Human error
Management
Optimization
Parameter identification
title Management algorithms and artificial intelligence systems for cardiopulmonary bypass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Management%20algorithms%20and%20artificial%20intelligence%20systems%20for%20cardiopulmonary%20bypass&rft.jtitle=Perfusion&rft.au=Condello,%20Ignazio&rft.date=2022-11-01&rft.volume=37&rft.issue=8&rft.spage=765&rft.epage=772&rft.pages=765-772&rft.issn=0267-6591&rft.eissn=1477-111X&rft_id=info:doi/10.1177/02676591211030762&rft_dat=%3Cproquest_cross%3E2729458599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729458599&rft_id=info:pmid/34250858&rft_sage_id=10.1177_02676591211030762&rfr_iscdi=true