Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra

Neural networks are increasingly being applied to problems in acoustics and audio signal processing. Large audio datasets are being generated for use in training machine learning algorithms, and the reduction of training times is of increasing relevance. The work presented here begins by reformulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-06, Vol.149 (6), p.4119-4133
Hauptverfasser: Paul, Vlad S., Nelson, Philip A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4133
container_issue 6
container_start_page 4119
container_title The Journal of the Acoustical Society of America
container_volume 149
creator Paul, Vlad S.
Nelson, Philip A.
description Neural networks are increasingly being applied to problems in acoustics and audio signal processing. Large audio datasets are being generated for use in training machine learning algorithms, and the reduction of training times is of increasing relevance. The work presented here begins by reformulating the analysis of the classical multilayer perceptron to show the explicit dependence of network parameters on the properties of the weight matrices in the network. This analysis then allows the application of the singular value decomposition (SVD) to the weight matrices. An algorithm is presented that makes use of regular applications of the SVD to progressively reduce the dimensionality of the network. This results in significant reductions in network training times of up to 50% with very little or no loss in accuracy. The use of the algorithm is demonstrated by applying it to a number of acoustical classification problems that help quantify the extent to which closely related spectra can be distinguished by machine learning.
doi_str_mv 10.1121/10.0005126
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550268995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550268995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2156-72ab455afd5cd559c4cd091b22de5f25466978a282f54ecaad198f400c033c713</originalsourceid><addsrcrecordid>eNo1kE1LAzEURYMoWKsbf0GWIowmmXnTyVKKX1Bxo-vhNZPYaDoZ81K0_94prasDl3Mfj8vYpRQ3Uip5O1IIAVLVR2wiQYmiAVUds8mYyqLSdX3Kzog-d1JT6gmLL5iT_-XYY9iSJ-5i4g4p82Ax9b7_4NHx3m4ShhH5J6Yv4j8-rzgOQ_AGs489z5HnleUmIJF3_-nYRBM3lL3hNFiTE56zE4eB7MWBU_b-cP82fyoWr4_P87tFYZSEupgpXFYA6DowHYA2lemElkulOgtOQVXXetagapSDyhrETurGVUIYUZZmJsspu9rfHVL83ljK7dqTsSFgb8ePWgUgVN1oDaN6vVdNikTJunZIfo1p20rR7lbd8bBq-Qc2Wmr9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550268995</pqid></control><display><type>article</type><title>Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Paul, Vlad S. ; Nelson, Philip A.</creator><creatorcontrib>Paul, Vlad S. ; Nelson, Philip A.</creatorcontrib><description>Neural networks are increasingly being applied to problems in acoustics and audio signal processing. Large audio datasets are being generated for use in training machine learning algorithms, and the reduction of training times is of increasing relevance. The work presented here begins by reformulating the analysis of the classical multilayer perceptron to show the explicit dependence of network parameters on the properties of the weight matrices in the network. This analysis then allows the application of the singular value decomposition (SVD) to the weight matrices. An algorithm is presented that makes use of regular applications of the SVD to progressively reduce the dimensionality of the network. This results in significant reductions in network training times of up to 50% with very little or no loss in accuracy. The use of the algorithm is demonstrated by applying it to a number of acoustical classification problems that help quantify the extent to which closely related spectra can be distinguished by machine learning.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0005126</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-06, Vol.149 (6), p.4119-4133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2156-72ab455afd5cd559c4cd091b22de5f25466978a282f54ecaad198f400c033c713</citedby><cites>FETCH-LOGICAL-c2156-72ab455afd5cd559c4cd091b22de5f25466978a282f54ecaad198f400c033c713</cites><orcidid>0000-0002-5562-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Paul, Vlad S.</creatorcontrib><creatorcontrib>Nelson, Philip A.</creatorcontrib><title>Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra</title><title>The Journal of the Acoustical Society of America</title><description>Neural networks are increasingly being applied to problems in acoustics and audio signal processing. Large audio datasets are being generated for use in training machine learning algorithms, and the reduction of training times is of increasing relevance. The work presented here begins by reformulating the analysis of the classical multilayer perceptron to show the explicit dependence of network parameters on the properties of the weight matrices in the network. This analysis then allows the application of the singular value decomposition (SVD) to the weight matrices. An algorithm is presented that makes use of regular applications of the SVD to progressively reduce the dimensionality of the network. This results in significant reductions in network training times of up to 50% with very little or no loss in accuracy. The use of the algorithm is demonstrated by applying it to a number of acoustical classification problems that help quantify the extent to which closely related spectra can be distinguished by machine learning.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEURYMoWKsbf0GWIowmmXnTyVKKX1Bxo-vhNZPYaDoZ81K0_94prasDl3Mfj8vYpRQ3Uip5O1IIAVLVR2wiQYmiAVUds8mYyqLSdX3Kzog-d1JT6gmLL5iT_-XYY9iSJ-5i4g4p82Ax9b7_4NHx3m4ShhH5J6Yv4j8-rzgOQ_AGs489z5HnleUmIJF3_-nYRBM3lL3hNFiTE56zE4eB7MWBU_b-cP82fyoWr4_P87tFYZSEupgpXFYA6DowHYA2lemElkulOgtOQVXXetagapSDyhrETurGVUIYUZZmJsspu9rfHVL83ljK7dqTsSFgb8ePWgUgVN1oDaN6vVdNikTJunZIfo1p20rR7lbd8bBq-Qc2Wmr9</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Paul, Vlad S.</creator><creator>Nelson, Philip A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5562-6102</orcidid></search><sort><creationdate>20210601</creationdate><title>Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra</title><author>Paul, Vlad S. ; Nelson, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2156-72ab455afd5cd559c4cd091b22de5f25466978a282f54ecaad198f400c033c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Vlad S.</creatorcontrib><creatorcontrib>Nelson, Philip A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Vlad S.</au><au>Nelson, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>149</volume><issue>6</issue><spage>4119</spage><epage>4133</epage><pages>4119-4133</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Neural networks are increasingly being applied to problems in acoustics and audio signal processing. Large audio datasets are being generated for use in training machine learning algorithms, and the reduction of training times is of increasing relevance. The work presented here begins by reformulating the analysis of the classical multilayer perceptron to show the explicit dependence of network parameters on the properties of the weight matrices in the network. This analysis then allows the application of the singular value decomposition (SVD) to the weight matrices. An algorithm is presented that makes use of regular applications of the SVD to progressively reduce the dimensionality of the network. This results in significant reductions in network training times of up to 50% with very little or no loss in accuracy. The use of the algorithm is demonstrated by applying it to a number of acoustical classification problems that help quantify the extent to which closely related spectra can be distinguished by machine learning.</abstract><doi>10.1121/10.0005126</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5562-6102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-06, Vol.149 (6), p.4119-4133
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_2550268995
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20analysis%20for%20fast%20learning%20of%20neural%20networks%20with%20application%20to%20the%20classification%20of%20acoustic%20spectra&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Paul,%20Vlad%20S.&rft.date=2021-06-01&rft.volume=149&rft.issue=6&rft.spage=4119&rft.epage=4133&rft.pages=4119-4133&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/10.0005126&rft_dat=%3Cproquest_cross%3E2550268995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550268995&rft_id=info:pmid/&rfr_iscdi=true