Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage
Aqueous Zn‐storage behaviors of MoS2‐based cathodes mainly rely on the ion‐(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in‐situ molecular engineering strategy in terms of structure defects manufacturing and O‐doping is proposed for MoS2 (designated as D‐MoS...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2021-09, Vol.60 (37), p.20286-20293 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20293 |
---|---|
container_issue | 37 |
container_start_page | 20286 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Li, Shengwei Liu, Yongchang Zhao, Xudong Cui, Kaixuan Shen, Qiuyu Li, Ping Qu, Xuanhui Jiao, Lifang |
description | Aqueous Zn‐storage behaviors of MoS2‐based cathodes mainly rely on the ion‐(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in‐situ molecular engineering strategy in terms of structure defects manufacturing and O‐doping is proposed for MoS2 (designated as D‐MoS2‐O) to unlock the inert basal plane, expand the interlayer spacing (from 6.2 to 9.6 Å), and produce abundant 1T‐phase. The tailored D‐MoS2‐O with excellent hydrophilicity and high conductivity allows the 3D Zn2+ transport along both the ab plane and c‐axis, thus achieving the exceptional high rate capability. Zn2+ diffusion through the basal plane is verified by DFT computations. As a proof of concept, the wearable quasi‐solid‐state rechargeable Zn battery employing the D‐MoS2‐O cathode operates stably even under severe bending conditions, showing great application prospects. This work opens a new window for designing high‐performance layered cathode materials for aqueous Zn‐ion batteries.
In‐situ molecular engineering of structure defect manufacturing and O‐doping unlocks the MoS2 basal plane and simultaneously upgrades its interlayer spacing (from 6.2 to 9.6 Å), hydrophilicity, and electrical conductivity. These merits enable highly efficient 3D Zn‐ion transport in the MoS2 lattice along both the ab plane and c‐axis, thus leading to fast reaction kinetics and the exceptional rate performance in aqueous Zn‐ion batteries. |
doi_str_mv | 10.1002/anie.202108317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550268910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565977651</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3327-84e0048d6e44f4efae6a45777205c6cbbc8272339540a9df0dec765f2f154dd83</originalsourceid><addsrcrecordid>eNpdkb1OwzAUhS0EElBYmS2xsKT4N3bGggpUKlCpdGGJ3OQmpLg22K1QN3gDnpEnwRWIgen-fTr3SAehE0r6lBB2blwHfUYYJZpTtYMOqGQ040rx3dQLzjOlJd1HhzEuEq81yQ_Qx623UK2tCXjo2s4BhM612Dt866cs7czcQsRjE1rAI7eCYM0GQsTG1XjmrK-eocYXJhqLJ9a4xDY-4Juuffp6_5xASNPSuArw4HUNfh3xo0uHUXowXflgWjhCe42xEY5_aw_NroYPlzfZ-P56dDkYZwvOmcq0AEKErnMQohHQGMiNkEopRmSVV_N5pZlinBdSEFPUDamhUrlsWEOlqGvNe-jsR_cl-GQlrsplFyuwW9PJV8mkJCzXBSUJPf2HLvw6uOQuUbksVBKmiSp-qLfOwqZ8Cd3ShE1JSbmNo9zGUf7FUQ7uRsO_iX8D6F6Cvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565977651</pqid></control><display><type>article</type><title>Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shengwei ; Liu, Yongchang ; Zhao, Xudong ; Cui, Kaixuan ; Shen, Qiuyu ; Li, Ping ; Qu, Xuanhui ; Jiao, Lifang</creator><creatorcontrib>Li, Shengwei ; Liu, Yongchang ; Zhao, Xudong ; Cui, Kaixuan ; Shen, Qiuyu ; Li, Ping ; Qu, Xuanhui ; Jiao, Lifang</creatorcontrib><description>Aqueous Zn‐storage behaviors of MoS2‐based cathodes mainly rely on the ion‐(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in‐situ molecular engineering strategy in terms of structure defects manufacturing and O‐doping is proposed for MoS2 (designated as D‐MoS2‐O) to unlock the inert basal plane, expand the interlayer spacing (from 6.2 to 9.6 Å), and produce abundant 1T‐phase. The tailored D‐MoS2‐O with excellent hydrophilicity and high conductivity allows the 3D Zn2+ transport along both the ab plane and c‐axis, thus achieving the exceptional high rate capability. Zn2+ diffusion through the basal plane is verified by DFT computations. As a proof of concept, the wearable quasi‐solid‐state rechargeable Zn battery employing the D‐MoS2‐O cathode operates stably even under severe bending conditions, showing great application prospects. This work opens a new window for designing high‐performance layered cathode materials for aqueous Zn‐ion batteries.
In‐situ molecular engineering of structure defect manufacturing and O‐doping unlocks the MoS2 basal plane and simultaneously upgrades its interlayer spacing (from 6.2 to 9.6 Å), hydrophilicity, and electrical conductivity. These merits enable highly efficient 3D Zn‐ion transport in the MoS2 lattice along both the ab plane and c‐axis, thus leading to fast reaction kinetics and the exceptional rate performance in aqueous Zn‐ion batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202108317</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous Zn-ion batteries ; Basal plane ; cathode materials ; Cathodes ; DFT computations ; Diffusion rate ; Electrode materials ; Interlayers ; Ion storage ; molecular engineering ; Molecular structure ; Molybdenum disulfide ; MoS2 ; Rechargeable batteries ; Zinc</subject><ispartof>Angewandte Chemie International Edition, 2021-09, Vol.60 (37), p.20286-20293</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7577-0446 ; 0000-0003-0678-3686 ; 0000-0001-9276-0602 ; 0000-0003-1998-9309 ; 0000-0002-2943-3008 ; 0000-0003-0280-6860 ; 0000-0002-4676-997X ; 0000-0003-1213-8229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202108317$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202108317$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Shengwei</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Cui, Kaixuan</creatorcontrib><creatorcontrib>Shen, Qiuyu</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Xuanhui</creatorcontrib><creatorcontrib>Jiao, Lifang</creatorcontrib><title>Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage</title><title>Angewandte Chemie International Edition</title><description>Aqueous Zn‐storage behaviors of MoS2‐based cathodes mainly rely on the ion‐(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in‐situ molecular engineering strategy in terms of structure defects manufacturing and O‐doping is proposed for MoS2 (designated as D‐MoS2‐O) to unlock the inert basal plane, expand the interlayer spacing (from 6.2 to 9.6 Å), and produce abundant 1T‐phase. The tailored D‐MoS2‐O with excellent hydrophilicity and high conductivity allows the 3D Zn2+ transport along both the ab plane and c‐axis, thus achieving the exceptional high rate capability. Zn2+ diffusion through the basal plane is verified by DFT computations. As a proof of concept, the wearable quasi‐solid‐state rechargeable Zn battery employing the D‐MoS2‐O cathode operates stably even under severe bending conditions, showing great application prospects. This work opens a new window for designing high‐performance layered cathode materials for aqueous Zn‐ion batteries.
In‐situ molecular engineering of structure defect manufacturing and O‐doping unlocks the MoS2 basal plane and simultaneously upgrades its interlayer spacing (from 6.2 to 9.6 Å), hydrophilicity, and electrical conductivity. These merits enable highly efficient 3D Zn‐ion transport in the MoS2 lattice along both the ab plane and c‐axis, thus leading to fast reaction kinetics and the exceptional rate performance in aqueous Zn‐ion batteries.</description><subject>aqueous Zn-ion batteries</subject><subject>Basal plane</subject><subject>cathode materials</subject><subject>Cathodes</subject><subject>DFT computations</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>Interlayers</subject><subject>Ion storage</subject><subject>molecular engineering</subject><subject>Molecular structure</subject><subject>Molybdenum disulfide</subject><subject>MoS2</subject><subject>Rechargeable batteries</subject><subject>Zinc</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkb1OwzAUhS0EElBYmS2xsKT4N3bGggpUKlCpdGGJ3OQmpLg22K1QN3gDnpEnwRWIgen-fTr3SAehE0r6lBB2blwHfUYYJZpTtYMOqGQ040rx3dQLzjOlJd1HhzEuEq81yQ_Qx623UK2tCXjo2s4BhM612Dt866cs7czcQsRjE1rAI7eCYM0GQsTG1XjmrK-eocYXJhqLJ9a4xDY-4Juuffp6_5xASNPSuArw4HUNfh3xo0uHUXowXflgWjhCe42xEY5_aw_NroYPlzfZ-P56dDkYZwvOmcq0AEKErnMQohHQGMiNkEopRmSVV_N5pZlinBdSEFPUDamhUrlsWEOlqGvNe-jsR_cl-GQlrsplFyuwW9PJV8mkJCzXBSUJPf2HLvw6uOQuUbksVBKmiSp-qLfOwqZ8Cd3ShE1JSbmNo9zGUf7FUQ7uRsO_iX8D6F6Cvw</recordid><startdate>20210906</startdate><enddate>20210906</enddate><creator>Li, Shengwei</creator><creator>Liu, Yongchang</creator><creator>Zhao, Xudong</creator><creator>Cui, Kaixuan</creator><creator>Shen, Qiuyu</creator><creator>Li, Ping</creator><creator>Qu, Xuanhui</creator><creator>Jiao, Lifang</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7577-0446</orcidid><orcidid>https://orcid.org/0000-0003-0678-3686</orcidid><orcidid>https://orcid.org/0000-0001-9276-0602</orcidid><orcidid>https://orcid.org/0000-0003-1998-9309</orcidid><orcidid>https://orcid.org/0000-0002-2943-3008</orcidid><orcidid>https://orcid.org/0000-0003-0280-6860</orcidid><orcidid>https://orcid.org/0000-0002-4676-997X</orcidid><orcidid>https://orcid.org/0000-0003-1213-8229</orcidid></search><sort><creationdate>20210906</creationdate><title>Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage</title><author>Li, Shengwei ; Liu, Yongchang ; Zhao, Xudong ; Cui, Kaixuan ; Shen, Qiuyu ; Li, Ping ; Qu, Xuanhui ; Jiao, Lifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3327-84e0048d6e44f4efae6a45777205c6cbbc8272339540a9df0dec765f2f154dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aqueous Zn-ion batteries</topic><topic>Basal plane</topic><topic>cathode materials</topic><topic>Cathodes</topic><topic>DFT computations</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>Interlayers</topic><topic>Ion storage</topic><topic>molecular engineering</topic><topic>Molecular structure</topic><topic>Molybdenum disulfide</topic><topic>MoS2</topic><topic>Rechargeable batteries</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shengwei</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Cui, Kaixuan</creatorcontrib><creatorcontrib>Shen, Qiuyu</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Qu, Xuanhui</creatorcontrib><creatorcontrib>Jiao, Lifang</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shengwei</au><au>Liu, Yongchang</au><au>Zhao, Xudong</au><au>Cui, Kaixuan</au><au>Shen, Qiuyu</au><au>Li, Ping</au><au>Qu, Xuanhui</au><au>Jiao, Lifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-09-06</date><risdate>2021</risdate><volume>60</volume><issue>37</issue><spage>20286</spage><epage>20293</epage><pages>20286-20293</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Aqueous Zn‐storage behaviors of MoS2‐based cathodes mainly rely on the ion‐(de)intercalation at edge sites but are limited by the inactive basal plane. Herein, an in‐situ molecular engineering strategy in terms of structure defects manufacturing and O‐doping is proposed for MoS2 (designated as D‐MoS2‐O) to unlock the inert basal plane, expand the interlayer spacing (from 6.2 to 9.6 Å), and produce abundant 1T‐phase. The tailored D‐MoS2‐O with excellent hydrophilicity and high conductivity allows the 3D Zn2+ transport along both the ab plane and c‐axis, thus achieving the exceptional high rate capability. Zn2+ diffusion through the basal plane is verified by DFT computations. As a proof of concept, the wearable quasi‐solid‐state rechargeable Zn battery employing the D‐MoS2‐O cathode operates stably even under severe bending conditions, showing great application prospects. This work opens a new window for designing high‐performance layered cathode materials for aqueous Zn‐ion batteries.
In‐situ molecular engineering of structure defect manufacturing and O‐doping unlocks the MoS2 basal plane and simultaneously upgrades its interlayer spacing (from 6.2 to 9.6 Å), hydrophilicity, and electrical conductivity. These merits enable highly efficient 3D Zn‐ion transport in the MoS2 lattice along both the ab plane and c‐axis, thus leading to fast reaction kinetics and the exceptional rate performance in aqueous Zn‐ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202108317</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7577-0446</orcidid><orcidid>https://orcid.org/0000-0003-0678-3686</orcidid><orcidid>https://orcid.org/0000-0001-9276-0602</orcidid><orcidid>https://orcid.org/0000-0003-1998-9309</orcidid><orcidid>https://orcid.org/0000-0002-2943-3008</orcidid><orcidid>https://orcid.org/0000-0003-0280-6860</orcidid><orcidid>https://orcid.org/0000-0002-4676-997X</orcidid><orcidid>https://orcid.org/0000-0003-1213-8229</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-09, Vol.60 (37), p.20286-20293 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2550268910 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aqueous Zn-ion batteries Basal plane cathode materials Cathodes DFT computations Diffusion rate Electrode materials Interlayers Ion storage molecular engineering Molecular structure Molybdenum disulfide MoS2 Rechargeable batteries Zinc |
title | Molecular Engineering on MoS2 Enables Large Interlayers and Unlocked Basal Planes for High‐Performance Aqueous Zn‐Ion Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20on%20MoS2%20Enables%20Large%20Interlayers%20and%20Unlocked%20Basal%20Planes%20for%20High%E2%80%90Performance%20Aqueous%20Zn%E2%80%90Ion%20Storage&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Shengwei&rft.date=2021-09-06&rft.volume=60&rft.issue=37&rft.spage=20286&rft.epage=20293&rft.pages=20286-20293&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202108317&rft_dat=%3Cproquest_wiley%3E2565977651%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565977651&rft_id=info:pmid/&rfr_iscdi=true |