Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects

Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-05, Vol.154 (20), p.201101-201101
1. Verfasser: Skripnikov, Leonid V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201101
container_issue 20
container_start_page 201101
container_title The Journal of chemical physics
container_volume 154
creator Skripnikov, Leonid V.
description Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.
doi_str_mv 10.1063/5.0053659
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550268467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531782213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</originalsourceid><addsrcrecordid>eNqd0d1KHTEQB_BQWuip9aJvEPDGVtbmYze7uRSpVRAK0nq7zMlONJJNjslGOG_i4zZ6LEIvvQoJv5kM_yHkC2fHnCn5vTtmrJOq0-_IirNBN73S7D1ZMSZ4oxVTH8mnnO8YY7wX7Yo8nmw2KYK5deGGznhNPT6gpzYmuiQI2S0uBooB043DTF2gyy3SBJMrM51jiNaXmNyE9eLRFI_0Cs4ohOkfMvDc4gqO6HpbGxhfpqfP7guEpcwN1rIlxWkbYHYmU7S2PuTP5IMFn3H_5dwjf85-_D49by5__bw4PblsjOzU0phOtm2rbQ8DV9hrjsC5VMwOrQXZ6rWwhnPQ2AupFRpRg1BiQm3l2qw5yD1yuOtbY7gvmJdxdtmg9xAwljyKrqsVQ6v6Sg_-o3expFCnq0ryfhCCy6q-7pRJMeeEdtwkN0PajpyNTzsau_FlR9V-29ls3PKc09vwQ0yvcNxMVv4FE3uhuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531782213</pqid></control><display><type>article</type><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Skripnikov, Leonid V.</creator><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><description>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0053659</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cations ; Dipole moments ; Electric dipoles ; Molecular physics ; Quantum electrodynamics ; Radium ; Radium 226</subject><ispartof>The Journal of chemical physics, 2021-05, Vol.154 (20), p.201101-201101</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</citedby><cites>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</cites><orcidid>0000-0002-2062-684X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0053659$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><title>The Journal of chemical physics</title><description>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</description><subject>Cations</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>Molecular physics</subject><subject>Quantum electrodynamics</subject><subject>Radium</subject><subject>Radium 226</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0d1KHTEQB_BQWuip9aJvEPDGVtbmYze7uRSpVRAK0nq7zMlONJJNjslGOG_i4zZ6LEIvvQoJv5kM_yHkC2fHnCn5vTtmrJOq0-_IirNBN73S7D1ZMSZ4oxVTH8mnnO8YY7wX7Yo8nmw2KYK5deGGznhNPT6gpzYmuiQI2S0uBooB043DTF2gyy3SBJMrM51jiNaXmNyE9eLRFI_0Cs4ohOkfMvDc4gqO6HpbGxhfpqfP7guEpcwN1rIlxWkbYHYmU7S2PuTP5IMFn3H_5dwjf85-_D49by5__bw4PblsjOzU0phOtm2rbQ8DV9hrjsC5VMwOrQXZ6rWwhnPQ2AupFRpRg1BiQm3l2qw5yD1yuOtbY7gvmJdxdtmg9xAwljyKrqsVQ6v6Sg_-o3expFCnq0ryfhCCy6q-7pRJMeeEdtwkN0PajpyNTzsau_FlR9V-29ls3PKc09vwQ0yvcNxMVv4FE3uhuA</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Skripnikov, Leonid V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2062-684X</orcidid></search><sort><creationdate>20210528</creationdate><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><author>Skripnikov, Leonid V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>Molecular physics</topic><topic>Quantum electrodynamics</topic><topic>Radium</topic><topic>Radium 226</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skripnikov, Leonid V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>154</volume><issue>20</issue><spage>201101</spage><epage>201101</epage><pages>201101-201101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053659</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2062-684X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-05, Vol.154 (20), p.201101-201101
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2550268467
source AIP Journals Complete; Alma/SFX Local Collection
subjects Cations
Dipole moments
Electric dipoles
Molecular physics
Quantum electrodynamics
Radium
Radium 226
title Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20meV%20level%20for%20transition%20energies%20in%20the%20radium%20monofluoride%20molecule%20RaF%20and%20radium%20cation%20Ra+%20by%20including%20quantum-electrodynamics%20effects&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Skripnikov,%20Leonid%20V.&rft.date=2021-05-28&rft.volume=154&rft.issue=20&rft.spage=201101&rft.epage=201101&rft.pages=201101-201101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0053659&rft_dat=%3Cproquest_scita%3E2531782213%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531782213&rft_id=info:pmid/&rfr_iscdi=true