Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects
Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measur...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-05, Vol.154 (20), p.201101-201101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201101 |
---|---|
container_issue | 20 |
container_start_page | 201101 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Skripnikov, Leonid V. |
description | Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics. |
doi_str_mv | 10.1063/5.0053659 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550268467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531782213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</originalsourceid><addsrcrecordid>eNqd0d1KHTEQB_BQWuip9aJvEPDGVtbmYze7uRSpVRAK0nq7zMlONJJNjslGOG_i4zZ6LEIvvQoJv5kM_yHkC2fHnCn5vTtmrJOq0-_IirNBN73S7D1ZMSZ4oxVTH8mnnO8YY7wX7Yo8nmw2KYK5deGGznhNPT6gpzYmuiQI2S0uBooB043DTF2gyy3SBJMrM51jiNaXmNyE9eLRFI_0Cs4ohOkfMvDc4gqO6HpbGxhfpqfP7guEpcwN1rIlxWkbYHYmU7S2PuTP5IMFn3H_5dwjf85-_D49by5__bw4PblsjOzU0phOtm2rbQ8DV9hrjsC5VMwOrQXZ6rWwhnPQ2AupFRpRg1BiQm3l2qw5yD1yuOtbY7gvmJdxdtmg9xAwljyKrqsVQ6v6Sg_-o3expFCnq0ryfhCCy6q-7pRJMeeEdtwkN0PajpyNTzsau_FlR9V-29ls3PKc09vwQ0yvcNxMVv4FE3uhuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531782213</pqid></control><display><type>article</type><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Skripnikov, Leonid V.</creator><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><description>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0053659</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cations ; Dipole moments ; Electric dipoles ; Molecular physics ; Quantum electrodynamics ; Radium ; Radium 226</subject><ispartof>The Journal of chemical physics, 2021-05, Vol.154 (20), p.201101-201101</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</citedby><cites>FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</cites><orcidid>0000-0002-2062-684X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0053659$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><title>The Journal of chemical physics</title><description>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</description><subject>Cations</subject><subject>Dipole moments</subject><subject>Electric dipoles</subject><subject>Molecular physics</subject><subject>Quantum electrodynamics</subject><subject>Radium</subject><subject>Radium 226</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0d1KHTEQB_BQWuip9aJvEPDGVtbmYze7uRSpVRAK0nq7zMlONJJNjslGOG_i4zZ6LEIvvQoJv5kM_yHkC2fHnCn5vTtmrJOq0-_IirNBN73S7D1ZMSZ4oxVTH8mnnO8YY7wX7Yo8nmw2KYK5deGGznhNPT6gpzYmuiQI2S0uBooB043DTF2gyy3SBJMrM51jiNaXmNyE9eLRFI_0Cs4ohOkfMvDc4gqO6HpbGxhfpqfP7guEpcwN1rIlxWkbYHYmU7S2PuTP5IMFn3H_5dwjf85-_D49by5__bw4PblsjOzU0phOtm2rbQ8DV9hrjsC5VMwOrQXZ6rWwhnPQ2AupFRpRg1BiQm3l2qw5yD1yuOtbY7gvmJdxdtmg9xAwljyKrqsVQ6v6Sg_-o3expFCnq0ryfhCCy6q-7pRJMeeEdtwkN0PajpyNTzsau_FlR9V-29ls3PKc09vwQ0yvcNxMVv4FE3uhuA</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Skripnikov, Leonid V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2062-684X</orcidid></search><sort><creationdate>20210528</creationdate><title>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</title><author>Skripnikov, Leonid V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c534449f7a816e791ea11360f84fa349b2fc11a9e72396ec200262de9f3bcb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations</topic><topic>Dipole moments</topic><topic>Electric dipoles</topic><topic>Molecular physics</topic><topic>Quantum electrodynamics</topic><topic>Radium</topic><topic>Radium 226</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skripnikov, Leonid V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skripnikov, Leonid V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>154</volume><issue>20</issue><spage>201101</spage><epage>201101</epage><pages>201101-201101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Highly accurate theoretical predictions of transition energies in the radium monofluoride molecule, 226RaF, and radium cation, 226Ra+, are reported. The considered transition X2Σ1/2 → A2Π1/2 in RaF is one of the main features of this molecule and can be used to laser-cool RaF for a subsequent measurement of the electron electric dipole moment. For molecular and atomic predictions, we go beyond the Dirac–Coulomb Hamiltonian and treat high-order electron correlation effects within the coupled cluster theory with the inclusion of quadruple and ever higher amplitudes. The effects of quantum electrodynamics (QED) are included non-perturbatively using the model QED operator that is now implemented for molecules. It is shown that the inclusion of the QED effects in molecular and atomic calculations is a key ingredient in resolving the discrepancy between the theoretical values obtained within the Dirac–Coulomb–Breit Hamiltonian and the experiment. The remaining deviation from the experimental values is within a few meV. This is more than an order of magnitude better than the “chemical accuracy,” 1 kcal/mol = 43 meV, that is usually considered as a guiding thread in theoretical molecular physics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053659</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2062-684X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-05, Vol.154 (20), p.201101-201101 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2550268467 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cations Dipole moments Electric dipoles Molecular physics Quantum electrodynamics Radium Radium 226 |
title | Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra+ by including quantum-electrodynamics effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20meV%20level%20for%20transition%20energies%20in%20the%20radium%20monofluoride%20molecule%20RaF%20and%20radium%20cation%20Ra+%20by%20including%20quantum-electrodynamics%20effects&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Skripnikov,%20Leonid%20V.&rft.date=2021-05-28&rft.volume=154&rft.issue=20&rft.spage=201101&rft.epage=201101&rft.pages=201101-201101&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0053659&rft_dat=%3Cproquest_scita%3E2531782213%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531782213&rft_id=info:pmid/&rfr_iscdi=true |