A toolbox for generating scalable mitral valve morphometric models

The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-08, Vol.135, p.104628-104628, Article 104628
Hauptverfasser: de Oliveira, Diana C., Espino, Daniel M., Deorsola, Luca, Mynard, Jonathan P., Rajagopal, Vijay, Buchan, Keith, Dawson, Dana, Shepherd, Duncan E.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104628
container_issue
container_start_page 104628
container_title Computers in biology and medicine
container_volume 135
creator de Oliveira, Diana C.
Espino, Daniel M.
Deorsola, Luca
Mynard, Jonathan P.
Rajagopal, Vijay
Buchan, Keith
Dawson, Dana
Shepherd, Duncan E.T.
description The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations. MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion. The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices. •Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.
doi_str_mv 10.1016/j.compbiomed.2021.104628
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550265727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521004224</els_id><sourcerecordid>2550265727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6Hxq8CNJj5Ttz3B3WD1jwoueQTlevGdKdMcmM-u_N0osLXvSUVHieVPEWIR2FLQWq3h22Ps3HIaQZxy0DRtuzUMw8IRtq9K4HycVTsgGg0AvD5AV5UcoBAARweE4uuGBCUcU25PqqqynFIf3sppS7O1wwuxqWu654F90QsZtDzS52ZxfPrUj5-K21rTn4VowYy0vybHKx4KuH85J8fX_zZf-xv_384dP-6rb3gu1qbwx6Pzk36B2TikpGHWoA40bkDM2OT1JKJhzioNEoKUfNuHZUU84HOjF-Sd6s_x5z-n7CUu0ciscY3YLpVCyTEpiSmumGvv4LPaRTXtp0jVKcGqBaNsqslM-plIyTPeYwu_zLUrD3OduDfczZ3uds15yb-nZVf-CQpuIDLh7_6C1o1dYgOGs3oI-N_ofeh9oWkJZ9Oi21qder2oLGc8BsH_QxZPTVjin8e9rf-CSpLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563180175</pqid></control><display><type>article</type><title>A toolbox for generating scalable mitral valve morphometric models</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</creator><creatorcontrib>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</creatorcontrib><description>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations. MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion. The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices. •Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104628</identifier><identifier>PMID: 34246162</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Anatomy ; Biology ; Biomechanics ; Computational ; Computer Science ; Computer Science, Interdisciplinary Applications ; Computing time ; Empirical equations ; Engineering ; Engineering, Biomedical ; Exports ; Finite element method ; Fluid-structure interaction ; Geometry ; Heart valves ; Life Sciences &amp; Biomedicine ; Life Sciences &amp; Biomedicine - Other Topics ; Mathematical &amp; Computational Biology ; Mathematical models ; Medical electronics ; Medical equipment ; Medical imaging ; Mitral valve ; Morphometry ; Muscles ; Parameterization ; Parametric model ; Parametric statistics ; Patients ; Polynomials ; Science &amp; Technology ; Simulation ; Software ; Technology</subject><ispartof>Computers in biology and medicine, 2021-08, Vol.135, p.104628-104628, Article 104628</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687943200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</citedby><cites>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</cites><orcidid>0000-0002-5509-402X ; 0000-0002-8151-1333 ; 0000-0002-5692-2106 ; 0000-0001-5588-696X ; 0000-0003-2815-4469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563180175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000,64390,64392,64394,72474</link.rule.ids></links><search><creatorcontrib>de Oliveira, Diana C.</creatorcontrib><creatorcontrib>Espino, Daniel M.</creatorcontrib><creatorcontrib>Deorsola, Luca</creatorcontrib><creatorcontrib>Mynard, Jonathan P.</creatorcontrib><creatorcontrib>Rajagopal, Vijay</creatorcontrib><creatorcontrib>Buchan, Keith</creatorcontrib><creatorcontrib>Dawson, Dana</creatorcontrib><creatorcontrib>Shepherd, Duncan E.T.</creatorcontrib><title>A toolbox for generating scalable mitral valve morphometric models</title><title>Computers in biology and medicine</title><addtitle>COMPUT BIOL MED</addtitle><description>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations. MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion. The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices. •Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</description><subject>Anatomy</subject><subject>Biology</subject><subject>Biomechanics</subject><subject>Computational</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Computing time</subject><subject>Empirical equations</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Exports</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Geometry</subject><subject>Heart valves</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Life Sciences &amp; Biomedicine - Other Topics</subject><subject>Mathematical &amp; Computational Biology</subject><subject>Mathematical models</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Medical imaging</subject><subject>Mitral valve</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>Parameterization</subject><subject>Parametric model</subject><subject>Parametric statistics</subject><subject>Patients</subject><subject>Polynomials</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Software</subject><subject>Technology</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6Hxq8CNJj5Ttz3B3WD1jwoueQTlevGdKdMcmM-u_N0osLXvSUVHieVPEWIR2FLQWq3h22Ps3HIaQZxy0DRtuzUMw8IRtq9K4HycVTsgGg0AvD5AV5UcoBAARweE4uuGBCUcU25PqqqynFIf3sppS7O1wwuxqWu654F90QsZtDzS52ZxfPrUj5-K21rTn4VowYy0vybHKx4KuH85J8fX_zZf-xv_384dP-6rb3gu1qbwx6Pzk36B2TikpGHWoA40bkDM2OT1JKJhzioNEoKUfNuHZUU84HOjF-Sd6s_x5z-n7CUu0ciscY3YLpVCyTEpiSmumGvv4LPaRTXtp0jVKcGqBaNsqslM-plIyTPeYwu_zLUrD3OduDfczZ3uds15yb-nZVf-CQpuIDLh7_6C1o1dYgOGs3oI-N_ofeh9oWkJZ9Oi21qder2oLGc8BsH_QxZPTVjin8e9rf-CSpLw</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>de Oliveira, Diana C.</creator><creator>Espino, Daniel M.</creator><creator>Deorsola, Luca</creator><creator>Mynard, Jonathan P.</creator><creator>Rajagopal, Vijay</creator><creator>Buchan, Keith</creator><creator>Dawson, Dana</creator><creator>Shepherd, Duncan E.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5509-402X</orcidid><orcidid>https://orcid.org/0000-0002-8151-1333</orcidid><orcidid>https://orcid.org/0000-0002-5692-2106</orcidid><orcidid>https://orcid.org/0000-0001-5588-696X</orcidid><orcidid>https://orcid.org/0000-0003-2815-4469</orcidid></search><sort><creationdate>202108</creationdate><title>A toolbox for generating scalable mitral valve morphometric models</title><author>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatomy</topic><topic>Biology</topic><topic>Biomechanics</topic><topic>Computational</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Computing time</topic><topic>Empirical equations</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Exports</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Geometry</topic><topic>Heart valves</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Life Sciences &amp; Biomedicine - Other Topics</topic><topic>Mathematical &amp; Computational Biology</topic><topic>Mathematical models</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Medical imaging</topic><topic>Mitral valve</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>Parameterization</topic><topic>Parametric model</topic><topic>Parametric statistics</topic><topic>Patients</topic><topic>Polynomials</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Software</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Diana C.</creatorcontrib><creatorcontrib>Espino, Daniel M.</creatorcontrib><creatorcontrib>Deorsola, Luca</creatorcontrib><creatorcontrib>Mynard, Jonathan P.</creatorcontrib><creatorcontrib>Rajagopal, Vijay</creatorcontrib><creatorcontrib>Buchan, Keith</creatorcontrib><creatorcontrib>Dawson, Dana</creatorcontrib><creatorcontrib>Shepherd, Duncan E.T.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Diana C.</au><au>Espino, Daniel M.</au><au>Deorsola, Luca</au><au>Mynard, Jonathan P.</au><au>Rajagopal, Vijay</au><au>Buchan, Keith</au><au>Dawson, Dana</au><au>Shepherd, Duncan E.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A toolbox for generating scalable mitral valve morphometric models</atitle><jtitle>Computers in biology and medicine</jtitle><stitle>COMPUT BIOL MED</stitle><date>2021-08</date><risdate>2021</risdate><volume>135</volume><spage>104628</spage><epage>104628</epage><pages>104628-104628</pages><artnum>104628</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations. MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion. The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices. •Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>34246162</pmid><doi>10.1016/j.compbiomed.2021.104628</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5509-402X</orcidid><orcidid>https://orcid.org/0000-0002-8151-1333</orcidid><orcidid>https://orcid.org/0000-0002-5692-2106</orcidid><orcidid>https://orcid.org/0000-0001-5588-696X</orcidid><orcidid>https://orcid.org/0000-0003-2815-4469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2021-08, Vol.135, p.104628-104628, Article 104628
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2550265727
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Anatomy
Biology
Biomechanics
Computational
Computer Science
Computer Science, Interdisciplinary Applications
Computing time
Empirical equations
Engineering
Engineering, Biomedical
Exports
Finite element method
Fluid-structure interaction
Geometry
Heart valves
Life Sciences & Biomedicine
Life Sciences & Biomedicine - Other Topics
Mathematical & Computational Biology
Mathematical models
Medical electronics
Medical equipment
Medical imaging
Mitral valve
Morphometry
Muscles
Parameterization
Parametric model
Parametric statistics
Patients
Polynomials
Science & Technology
Simulation
Software
Technology
title A toolbox for generating scalable mitral valve morphometric models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20toolbox%20for%20generating%20scalable%20mitral%20valve%20morphometric%20models&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=de%20Oliveira,%20Diana%20C.&rft.date=2021-08&rft.volume=135&rft.spage=104628&rft.epage=104628&rft.pages=104628-104628&rft.artnum=104628&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104628&rft_dat=%3Cproquest_webof%3E2550265727%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563180175&rft_id=info:pmid/34246162&rft_els_id=S0010482521004224&rfr_iscdi=true