A toolbox for generating scalable mitral valve morphometric models
The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2021-08, Vol.135, p.104628-104628, Article 104628 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104628 |
---|---|
container_issue | |
container_start_page | 104628 |
container_title | Computers in biology and medicine |
container_volume | 135 |
creator | de Oliveira, Diana C. Espino, Daniel M. Deorsola, Luca Mynard, Jonathan P. Rajagopal, Vijay Buchan, Keith Dawson, Dana Shepherd, Duncan E.T. |
description | The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations.
MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion.
The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices.
•Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling. |
doi_str_mv | 10.1016/j.compbiomed.2021.104628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550265727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521004224</els_id><sourcerecordid>2550265727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6Hxq8CNJj5Ttz3B3WD1jwoueQTlevGdKdMcmM-u_N0osLXvSUVHieVPEWIR2FLQWq3h22Ps3HIaQZxy0DRtuzUMw8IRtq9K4HycVTsgGg0AvD5AV5UcoBAARweE4uuGBCUcU25PqqqynFIf3sppS7O1wwuxqWu654F90QsZtDzS52ZxfPrUj5-K21rTn4VowYy0vybHKx4KuH85J8fX_zZf-xv_384dP-6rb3gu1qbwx6Pzk36B2TikpGHWoA40bkDM2OT1JKJhzioNEoKUfNuHZUU84HOjF-Sd6s_x5z-n7CUu0ciscY3YLpVCyTEpiSmumGvv4LPaRTXtp0jVKcGqBaNsqslM-plIyTPeYwu_zLUrD3OduDfczZ3uds15yb-nZVf-CQpuIDLh7_6C1o1dYgOGs3oI-N_ofeh9oWkJZ9Oi21qder2oLGc8BsH_QxZPTVjin8e9rf-CSpLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563180175</pqid></control><display><type>article</type><title>A toolbox for generating scalable mitral valve morphometric models</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</creator><creatorcontrib>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</creatorcontrib><description>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations.
MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion.
The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices.
•Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104628</identifier><identifier>PMID: 34246162</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Anatomy ; Biology ; Biomechanics ; Computational ; Computer Science ; Computer Science, Interdisciplinary Applications ; Computing time ; Empirical equations ; Engineering ; Engineering, Biomedical ; Exports ; Finite element method ; Fluid-structure interaction ; Geometry ; Heart valves ; Life Sciences & Biomedicine ; Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematical models ; Medical electronics ; Medical equipment ; Medical imaging ; Mitral valve ; Morphometry ; Muscles ; Parameterization ; Parametric model ; Parametric statistics ; Patients ; Polynomials ; Science & Technology ; Simulation ; Software ; Technology</subject><ispartof>Computers in biology and medicine, 2021-08, Vol.135, p.104628-104628, Article 104628</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687943200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</citedby><cites>FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</cites><orcidid>0000-0002-5509-402X ; 0000-0002-8151-1333 ; 0000-0002-5692-2106 ; 0000-0001-5588-696X ; 0000-0003-2815-4469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563180175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000,64390,64392,64394,72474</link.rule.ids></links><search><creatorcontrib>de Oliveira, Diana C.</creatorcontrib><creatorcontrib>Espino, Daniel M.</creatorcontrib><creatorcontrib>Deorsola, Luca</creatorcontrib><creatorcontrib>Mynard, Jonathan P.</creatorcontrib><creatorcontrib>Rajagopal, Vijay</creatorcontrib><creatorcontrib>Buchan, Keith</creatorcontrib><creatorcontrib>Dawson, Dana</creatorcontrib><creatorcontrib>Shepherd, Duncan E.T.</creatorcontrib><title>A toolbox for generating scalable mitral valve morphometric models</title><title>Computers in biology and medicine</title><addtitle>COMPUT BIOL MED</addtitle><description>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations.
MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion.
The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices.
•Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</description><subject>Anatomy</subject><subject>Biology</subject><subject>Biomechanics</subject><subject>Computational</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Computing time</subject><subject>Empirical equations</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Exports</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Geometry</subject><subject>Heart valves</subject><subject>Life Sciences & Biomedicine</subject><subject>Life Sciences & Biomedicine - Other Topics</subject><subject>Mathematical & Computational Biology</subject><subject>Mathematical models</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Medical imaging</subject><subject>Mitral valve</subject><subject>Morphometry</subject><subject>Muscles</subject><subject>Parameterization</subject><subject>Parametric model</subject><subject>Parametric statistics</subject><subject>Patients</subject><subject>Polynomials</subject><subject>Science & Technology</subject><subject>Simulation</subject><subject>Software</subject><subject>Technology</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6Hxq8CNJj5Ttz3B3WD1jwoueQTlevGdKdMcmM-u_N0osLXvSUVHieVPEWIR2FLQWq3h22Ps3HIaQZxy0DRtuzUMw8IRtq9K4HycVTsgGg0AvD5AV5UcoBAARweE4uuGBCUcU25PqqqynFIf3sppS7O1wwuxqWu654F90QsZtDzS52ZxfPrUj5-K21rTn4VowYy0vybHKx4KuH85J8fX_zZf-xv_384dP-6rb3gu1qbwx6Pzk36B2TikpGHWoA40bkDM2OT1JKJhzioNEoKUfNuHZUU84HOjF-Sd6s_x5z-n7CUu0ciscY3YLpVCyTEpiSmumGvv4LPaRTXtp0jVKcGqBaNsqslM-plIyTPeYwu_zLUrD3OduDfczZ3uds15yb-nZVf-CQpuIDLh7_6C1o1dYgOGs3oI-N_ofeh9oWkJZ9Oi21qder2oLGc8BsH_QxZPTVjin8e9rf-CSpLw</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>de Oliveira, Diana C.</creator><creator>Espino, Daniel M.</creator><creator>Deorsola, Luca</creator><creator>Mynard, Jonathan P.</creator><creator>Rajagopal, Vijay</creator><creator>Buchan, Keith</creator><creator>Dawson, Dana</creator><creator>Shepherd, Duncan E.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5509-402X</orcidid><orcidid>https://orcid.org/0000-0002-8151-1333</orcidid><orcidid>https://orcid.org/0000-0002-5692-2106</orcidid><orcidid>https://orcid.org/0000-0001-5588-696X</orcidid><orcidid>https://orcid.org/0000-0003-2815-4469</orcidid></search><sort><creationdate>202108</creationdate><title>A toolbox for generating scalable mitral valve morphometric models</title><author>de Oliveira, Diana C. ; Espino, Daniel M. ; Deorsola, Luca ; Mynard, Jonathan P. ; Rajagopal, Vijay ; Buchan, Keith ; Dawson, Dana ; Shepherd, Duncan E.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-88eccfaab792561521ae7008ade32e893f55524aeeb7e8655d7237a17133b1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatomy</topic><topic>Biology</topic><topic>Biomechanics</topic><topic>Computational</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Computing time</topic><topic>Empirical equations</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Exports</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Geometry</topic><topic>Heart valves</topic><topic>Life Sciences & Biomedicine</topic><topic>Life Sciences & Biomedicine - Other Topics</topic><topic>Mathematical & Computational Biology</topic><topic>Mathematical models</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Medical imaging</topic><topic>Mitral valve</topic><topic>Morphometry</topic><topic>Muscles</topic><topic>Parameterization</topic><topic>Parametric model</topic><topic>Parametric statistics</topic><topic>Patients</topic><topic>Polynomials</topic><topic>Science & Technology</topic><topic>Simulation</topic><topic>Software</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Diana C.</creatorcontrib><creatorcontrib>Espino, Daniel M.</creatorcontrib><creatorcontrib>Deorsola, Luca</creatorcontrib><creatorcontrib>Mynard, Jonathan P.</creatorcontrib><creatorcontrib>Rajagopal, Vijay</creatorcontrib><creatorcontrib>Buchan, Keith</creatorcontrib><creatorcontrib>Dawson, Dana</creatorcontrib><creatorcontrib>Shepherd, Duncan E.T.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Diana C.</au><au>Espino, Daniel M.</au><au>Deorsola, Luca</au><au>Mynard, Jonathan P.</au><au>Rajagopal, Vijay</au><au>Buchan, Keith</au><au>Dawson, Dana</au><au>Shepherd, Duncan E.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A toolbox for generating scalable mitral valve morphometric models</atitle><jtitle>Computers in biology and medicine</jtitle><stitle>COMPUT BIOL MED</stitle><date>2021-08</date><risdate>2021</risdate><volume>135</volume><spage>104628</spage><epage>104628</epage><pages>104628-104628</pages><artnum>104628</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>The mitral valve is a complex anatomical structure, whose shape is key to several traits of its function and disease, being crucial for the success of surgical repair and implantation of medical devices. The aim of this study was to develop a parametric, scalable, and clinically useful model of the mitral valve, enabling the biomechanical evaluation of mitral repair techniques through finite element simulations.
MATLAB was used to parameterize the valve: the annular boundary was sampled from a porcine mitral valve mesh model and landmark points and relevant boundaries were selected for the parameterization of leaflets using polynomial fitting. Several geometric parameters describing the annulus, leaflet shape and papillary muscle position were implemented and used to scale the model according to patient dimensions. The developed model, available as a toolbox, allows for the generation of a population of models using patient-specific dimensions obtained from medical imaging or averaged dimensions evaluated from empirical equations based on the Golden Proportion.
The average model developed using this framework accurately represents mitral valve shapes, associated with relative errors reaching less than 10% for annular and leaflet length dimensions, and less than 24% in comparison with clinical data. Moreover, model generation takes less than 5 min of computing time, and the toolbox can account for individual morphological variations and be employed to evaluate mitral valve biomechanics; following further development and validation, it will aid clinicians when choosing the best patient-specific clinical intervention and improve the design process of new medical devices.
•Computational toolbox enabling quick generation of scalable mitral valve models.•A mathematical model for average mitral valve shape has been assessed and implemented.•Different user-options are available to generate a range of mitral valve geometries.•Input files can be directly generated for computational modelling.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>34246162</pmid><doi>10.1016/j.compbiomed.2021.104628</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5509-402X</orcidid><orcidid>https://orcid.org/0000-0002-8151-1333</orcidid><orcidid>https://orcid.org/0000-0002-5692-2106</orcidid><orcidid>https://orcid.org/0000-0001-5588-696X</orcidid><orcidid>https://orcid.org/0000-0003-2815-4469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2021-08, Vol.135, p.104628-104628, Article 104628 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2550265727 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Anatomy Biology Biomechanics Computational Computer Science Computer Science, Interdisciplinary Applications Computing time Empirical equations Engineering Engineering, Biomedical Exports Finite element method Fluid-structure interaction Geometry Heart valves Life Sciences & Biomedicine Life Sciences & Biomedicine - Other Topics Mathematical & Computational Biology Mathematical models Medical electronics Medical equipment Medical imaging Mitral valve Morphometry Muscles Parameterization Parametric model Parametric statistics Patients Polynomials Science & Technology Simulation Software Technology |
title | A toolbox for generating scalable mitral valve morphometric models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20toolbox%20for%20generating%20scalable%20mitral%20valve%20morphometric%20models&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=de%20Oliveira,%20Diana%20C.&rft.date=2021-08&rft.volume=135&rft.spage=104628&rft.epage=104628&rft.pages=104628-104628&rft.artnum=104628&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104628&rft_dat=%3Cproquest_webof%3E2550265727%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563180175&rft_id=info:pmid/34246162&rft_els_id=S0010482521004224&rfr_iscdi=true |