Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation

With the evolution of deep learning technologies, computer vision‐related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2021-12, Vol.84 (12), p.3023-3034
Hauptverfasser: Sajjad, Muhammad, Ramzan, Farheen, Khan, Muhammad Usman Ghani, Rehman, Amjad, Kolivand, Mahyar, Fati, Suliman Mohamed, Bahaj, Saeed Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3034
container_issue 12
container_start_page 3023
container_title Microscopy research and technique
container_volume 84
creator Sajjad, Muhammad
Ramzan, Farheen
Khan, Muhammad Usman Ghani
Rehman, Amjad
Kolivand, Mahyar
Fati, Suliman Mohamed
Bahaj, Saeed Ali
description With the evolution of deep learning technologies, computer vision‐related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out‐perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three‐stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal‐to‐noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI. Proposed approach detects three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. Proposed model out‐performs in synthesis of brain PET images for all Alzheimer disease stages on ADNI datasetx.
doi_str_mv 10.1002/jemt.23861
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2550264076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550264076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3341-c60e5cb17fc77e7de454922d0a5305bf9b445d45e10d41332c7aa0d22b85803c3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqVw4RdY4kCplOLPZHOsylKKiuCwSNyiWXuy6yWxg-1stfyb_lOcbk8cepqvZ16N5i2Kt4xeMEr5xx0O6YKLRcWeFSeMNnWZu83zOVdN2TD662XxKsYdpYwpJk-K-0-II9He7X0_Jesd9GSDDgMku0cCZo8hQrC57TDd-fCbdD6Qy_7vFu2A4X0kxkaEiET3EKPtrIZZh0zRug0ZfbQp5BIHm6c5SX7wmwDj9kDOfixXHwg4Q-LBpS0mq4mBBASmzYAuPQi9Ll500Ed88xhPi5-fl6urL-Xt9-ubq8vbUgshWakrikqvWd3pusbaoFSy4dxQUIKqddespVRGKmTUSCYE1zUANZyvF2pBhRanxdlRdwz-z4QxtflijX0PDv0UW64U5ZWkdZXRd_-hOz-F_LqZairR1AsuMnV-pHTwMQbs2jHYAcKhZbSd3Wpnt9oHtzLMjvCd7fHwBNl-XX5bHXf-Aavsmzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596397823</pqid></control><display><type>article</type><title>Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation</title><source>Access via Wiley Online Library</source><creator>Sajjad, Muhammad ; Ramzan, Farheen ; Khan, Muhammad Usman Ghani ; Rehman, Amjad ; Kolivand, Mahyar ; Fati, Suliman Mohamed ; Bahaj, Saeed Ali</creator><creatorcontrib>Sajjad, Muhammad ; Ramzan, Farheen ; Khan, Muhammad Usman Ghani ; Rehman, Amjad ; Kolivand, Mahyar ; Fati, Suliman Mohamed ; Bahaj, Saeed Ali</creatorcontrib><description>With the evolution of deep learning technologies, computer vision‐related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out‐perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three‐stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal‐to‐noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI. Proposed approach detects three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. Proposed model out‐performs in synthesis of brain PET images for all Alzheimer disease stages on ADNI datasetx.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.23861</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer's disease ; Classification ; Cognitive ability ; Computer vision ; Data augmentation ; Datasets ; deep convolutional generative adversarial networks ; Deep learning ; Diagnosis ; Disease control ; Emissions ; Generative adversarial networks ; healthcare ; Image classification ; Machine learning ; Medical diagnosis ; medical image classification ; Medical imaging ; Model accuracy ; Neurodegenerative diseases ; Positron emission ; Positron emission tomography ; positron emission tomography (PET) scans ; public health ; Synthetic data ; synthetic image generation ; Tomography</subject><ispartof>Microscopy research and technique, 2021-12, Vol.84 (12), p.3023-3034</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3341-c60e5cb17fc77e7de454922d0a5305bf9b445d45e10d41332c7aa0d22b85803c3</citedby><cites>FETCH-LOGICAL-c3341-c60e5cb17fc77e7de454922d0a5305bf9b445d45e10d41332c7aa0d22b85803c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.23861$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.23861$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Ramzan, Farheen</creatorcontrib><creatorcontrib>Khan, Muhammad Usman Ghani</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Kolivand, Mahyar</creatorcontrib><creatorcontrib>Fati, Suliman Mohamed</creatorcontrib><creatorcontrib>Bahaj, Saeed Ali</creatorcontrib><title>Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation</title><title>Microscopy research and technique</title><description>With the evolution of deep learning technologies, computer vision‐related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out‐perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three‐stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal‐to‐noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI. Proposed approach detects three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. Proposed model out‐performs in synthesis of brain PET images for all Alzheimer disease stages on ADNI datasetx.</description><subject>Alzheimer's disease</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Computer vision</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>deep convolutional generative adversarial networks</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Disease control</subject><subject>Emissions</subject><subject>Generative adversarial networks</subject><subject>healthcare</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>medical image classification</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Neurodegenerative diseases</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET) scans</subject><subject>public health</subject><subject>Synthetic data</subject><subject>synthetic image generation</subject><subject>Tomography</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEqVw4RdY4kCplOLPZHOsylKKiuCwSNyiWXuy6yWxg-1stfyb_lOcbk8cepqvZ16N5i2Kt4xeMEr5xx0O6YKLRcWeFSeMNnWZu83zOVdN2TD662XxKsYdpYwpJk-K-0-II9He7X0_Jesd9GSDDgMku0cCZo8hQrC57TDd-fCbdD6Qy_7vFu2A4X0kxkaEiET3EKPtrIZZh0zRug0ZfbQp5BIHm6c5SX7wmwDj9kDOfixXHwg4Q-LBpS0mq4mBBASmzYAuPQi9Ll500Ed88xhPi5-fl6urL-Xt9-ubq8vbUgshWakrikqvWd3pusbaoFSy4dxQUIKqddespVRGKmTUSCYE1zUANZyvF2pBhRanxdlRdwz-z4QxtflijX0PDv0UW64U5ZWkdZXRd_-hOz-F_LqZairR1AsuMnV-pHTwMQbs2jHYAcKhZbSd3Wpnt9oHtzLMjvCd7fHwBNl-XX5bHXf-Aavsmzc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sajjad, Muhammad</creator><creator>Ramzan, Farheen</creator><creator>Khan, Muhammad Usman Ghani</creator><creator>Rehman, Amjad</creator><creator>Kolivand, Mahyar</creator><creator>Fati, Suliman Mohamed</creator><creator>Bahaj, Saeed Ali</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation</title><author>Sajjad, Muhammad ; Ramzan, Farheen ; Khan, Muhammad Usman Ghani ; Rehman, Amjad ; Kolivand, Mahyar ; Fati, Suliman Mohamed ; Bahaj, Saeed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3341-c60e5cb17fc77e7de454922d0a5305bf9b445d45e10d41332c7aa0d22b85803c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Computer vision</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>deep convolutional generative adversarial networks</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Disease control</topic><topic>Emissions</topic><topic>Generative adversarial networks</topic><topic>healthcare</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>medical image classification</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Neurodegenerative diseases</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET) scans</topic><topic>public health</topic><topic>Synthetic data</topic><topic>synthetic image generation</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajjad, Muhammad</creatorcontrib><creatorcontrib>Ramzan, Farheen</creatorcontrib><creatorcontrib>Khan, Muhammad Usman Ghani</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Kolivand, Mahyar</creatorcontrib><creatorcontrib>Fati, Suliman Mohamed</creatorcontrib><creatorcontrib>Bahaj, Saeed Ali</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajjad, Muhammad</au><au>Ramzan, Farheen</au><au>Khan, Muhammad Usman Ghani</au><au>Rehman, Amjad</au><au>Kolivand, Mahyar</au><au>Fati, Suliman Mohamed</au><au>Bahaj, Saeed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation</atitle><jtitle>Microscopy research and technique</jtitle><date>2021-12</date><risdate>2021</risdate><volume>84</volume><issue>12</issue><spage>3023</spage><epage>3034</epage><pages>3023-3034</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>With the evolution of deep learning technologies, computer vision‐related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out‐perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three‐stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal‐to‐noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI. Proposed approach detects three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. Proposed model out‐performs in synthesis of brain PET images for all Alzheimer disease stages on ADNI datasetx.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jemt.23861</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2021-12, Vol.84 (12), p.3023-3034
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_2550264076
source Access via Wiley Online Library
subjects Alzheimer's disease
Classification
Cognitive ability
Computer vision
Data augmentation
Datasets
deep convolutional generative adversarial networks
Deep learning
Diagnosis
Disease control
Emissions
Generative adversarial networks
healthcare
Image classification
Machine learning
Medical diagnosis
medical image classification
Medical imaging
Model accuracy
Neurodegenerative diseases
Positron emission
Positron emission tomography
positron emission tomography (PET) scans
public health
Synthetic data
synthetic image generation
Tomography
title Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20convolutional%20generative%20adversarial%20network%20for%20Alzheimer's%20disease%20classification%20using%20positron%20emission%20tomography%20(PET)%20and%20synthetic%20data%20augmentation&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Sajjad,%20Muhammad&rft.date=2021-12&rft.volume=84&rft.issue=12&rft.spage=3023&rft.epage=3034&rft.pages=3023-3034&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.23861&rft_dat=%3Cproquest_cross%3E2550264076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596397823&rft_id=info:pmid/&rfr_iscdi=true