Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness

This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. We found that several monofract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomarkers in medicine 2021-08, Vol.15 (12), p.929-940
Hauptverfasser: Djuričić, Goran J, Rajković, Nemanja, Milošević, Nebojša, Sopta, Jelena P, Borić, Igor, Dučić, Siniša, Apostolović, Milan, Radulovic, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 12
container_start_page 929
container_title Biomarkers in medicine
container_volume 15
creator Djuričić, Goran J
Rajković, Nemanja
Milošević, Nebojša
Sopta, Jelena P
Borić, Igor
Dučić, Siniša
Apostolović, Milan
Radulovic, Marko
description This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p
doi_str_mv 10.2217/bmm-2020-0876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2549690362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549690362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-268bc17be73bb424c1deb1fc4e59237e65497bb471eb47891e5857dfff1c0cfb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp69Co9eqnmo23aoyzqLqwIoufQphOMNE3ttML-e1O67s3LTGby8MI8hFwzesc5k_eVczGnnMY0l9kJWTKZ8pgKyU6P70wsyAXiF6WplBk_JwuRcJFxUSzJZu1dNw7lYH1bNlEZyh4tRt5EL29bjLoeaquHsMABPJa99q6M9Cc43wN2vkX7Ay0gXpIzUzYIV4e-Ih9Pj-_rTbx7fd6uH3axFjkfYp7llWayAimqKuGJZjVUzOgE0oILCVmaFDL8SAah5AWDNE9lbYxhmmpTiRW5nXO73n-PgINyFjU0TdmCH1HxEJAVdDpvReIZ1b1H7MGorreu7PeKUTXJU0GemuSpSV7gbw7RY-WgPtJ_tgJQzIAZhzGcry20GtQ8uUmUbeGf8F8yDX-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549690362</pqid></control><display><type>article</type><title>Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness</title><source>PubMed Central</source><creator>Djuričić, Goran J ; Rajković, Nemanja ; Milošević, Nebojša ; Sopta, Jelena P ; Borić, Igor ; Dučić, Siniša ; Apostolović, Milan ; Radulovic, Marko</creator><creatorcontrib>Djuričić, Goran J ; Rajković, Nemanja ; Milošević, Nebojša ; Sopta, Jelena P ; Borić, Igor ; Dučić, Siniša ; Apostolović, Milan ; Radulovic, Marko</creatorcontrib><description>This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p &lt;0.001), followed by   Y-axis intersection of the regression line  for  box fractal dimension, r²  for  FD and tumor circularity. This is the first full-scale study to indicate that computational analysis of pretreatment MRIs could provide imaging biomarkers for the classification of osteosarcoma according to their chemoresponsiveness. Fractal analysis of MRI scans was shown to predict the chemosensitivity of osteosarcoma. These findings may eventually lead to improved patient survival by enabling personalized cytotoxic chemotherapy prescription.</description><identifier>ISSN: 1752-0363</identifier><identifier>EISSN: 1752-0371</identifier><identifier>DOI: 10.2217/bmm-2020-0876</identifier><identifier>PMID: 34236239</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>cancer ; computational image analysis ; cytotoxic chemotherapy ; fractal analysis ; medical image analysis ; MRI ; osteosarcoma ; prediction ; prognosis ; tumor circularity</subject><ispartof>Biomarkers in medicine, 2021-08, Vol.15 (12), p.929-940</ispartof><rights>2021 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-268bc17be73bb424c1deb1fc4e59237e65497bb471eb47891e5857dfff1c0cfb3</citedby><cites>FETCH-LOGICAL-c382t-268bc17be73bb424c1deb1fc4e59237e65497bb471eb47891e5857dfff1c0cfb3</cites><orcidid>0000-0001-8448-9234 ; 0000-0003-0607-2462 ; 0000-0002-8066-5701 ; 0000-0002-6496-2220 ; 0000-0002-2314-7457 ; 0000-0002-0589-1848 ; 0000-0002-5554-043X ; 0000-0002-3845-3780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34236239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Djuričić, Goran J</creatorcontrib><creatorcontrib>Rajković, Nemanja</creatorcontrib><creatorcontrib>Milošević, Nebojša</creatorcontrib><creatorcontrib>Sopta, Jelena P</creatorcontrib><creatorcontrib>Borić, Igor</creatorcontrib><creatorcontrib>Dučić, Siniša</creatorcontrib><creatorcontrib>Apostolović, Milan</creatorcontrib><creatorcontrib>Radulovic, Marko</creatorcontrib><title>Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness</title><title>Biomarkers in medicine</title><addtitle>Biomark Med</addtitle><description>This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p &lt;0.001), followed by   Y-axis intersection of the regression line  for  box fractal dimension, r²  for  FD and tumor circularity. This is the first full-scale study to indicate that computational analysis of pretreatment MRIs could provide imaging biomarkers for the classification of osteosarcoma according to their chemoresponsiveness. Fractal analysis of MRI scans was shown to predict the chemosensitivity of osteosarcoma. These findings may eventually lead to improved patient survival by enabling personalized cytotoxic chemotherapy prescription.</description><subject>cancer</subject><subject>computational image analysis</subject><subject>cytotoxic chemotherapy</subject><subject>fractal analysis</subject><subject>medical image analysis</subject><subject>MRI</subject><subject>osteosarcoma</subject><subject>prediction</subject><subject>prognosis</subject><subject>tumor circularity</subject><issn>1752-0363</issn><issn>1752-0371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rp69Co9eqnmo23aoyzqLqwIoufQphOMNE3ttML-e1O67s3LTGby8MI8hFwzesc5k_eVczGnnMY0l9kJWTKZ8pgKyU6P70wsyAXiF6WplBk_JwuRcJFxUSzJZu1dNw7lYH1bNlEZyh4tRt5EL29bjLoeaquHsMABPJa99q6M9Cc43wN2vkX7Ay0gXpIzUzYIV4e-Ih9Pj-_rTbx7fd6uH3axFjkfYp7llWayAimqKuGJZjVUzOgE0oILCVmaFDL8SAah5AWDNE9lbYxhmmpTiRW5nXO73n-PgINyFjU0TdmCH1HxEJAVdDpvReIZ1b1H7MGorreu7PeKUTXJU0GemuSpSV7gbw7RY-WgPtJ_tgJQzIAZhzGcry20GtQ8uUmUbeGf8F8yDX-a</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Djuričić, Goran J</creator><creator>Rajković, Nemanja</creator><creator>Milošević, Nebojša</creator><creator>Sopta, Jelena P</creator><creator>Borić, Igor</creator><creator>Dučić, Siniša</creator><creator>Apostolović, Milan</creator><creator>Radulovic, Marko</creator><general>Future Medicine Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8448-9234</orcidid><orcidid>https://orcid.org/0000-0003-0607-2462</orcidid><orcidid>https://orcid.org/0000-0002-8066-5701</orcidid><orcidid>https://orcid.org/0000-0002-6496-2220</orcidid><orcidid>https://orcid.org/0000-0002-2314-7457</orcidid><orcidid>https://orcid.org/0000-0002-0589-1848</orcidid><orcidid>https://orcid.org/0000-0002-5554-043X</orcidid><orcidid>https://orcid.org/0000-0002-3845-3780</orcidid></search><sort><creationdate>20210801</creationdate><title>Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness</title><author>Djuričić, Goran J ; Rajković, Nemanja ; Milošević, Nebojša ; Sopta, Jelena P ; Borić, Igor ; Dučić, Siniša ; Apostolović, Milan ; Radulovic, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-268bc17be73bb424c1deb1fc4e59237e65497bb471eb47891e5857dfff1c0cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cancer</topic><topic>computational image analysis</topic><topic>cytotoxic chemotherapy</topic><topic>fractal analysis</topic><topic>medical image analysis</topic><topic>MRI</topic><topic>osteosarcoma</topic><topic>prediction</topic><topic>prognosis</topic><topic>tumor circularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djuričić, Goran J</creatorcontrib><creatorcontrib>Rajković, Nemanja</creatorcontrib><creatorcontrib>Milošević, Nebojša</creatorcontrib><creatorcontrib>Sopta, Jelena P</creatorcontrib><creatorcontrib>Borić, Igor</creatorcontrib><creatorcontrib>Dučić, Siniša</creatorcontrib><creatorcontrib>Apostolović, Milan</creatorcontrib><creatorcontrib>Radulovic, Marko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomarkers in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djuričić, Goran J</au><au>Rajković, Nemanja</au><au>Milošević, Nebojša</au><au>Sopta, Jelena P</au><au>Borić, Igor</au><au>Dučić, Siniša</au><au>Apostolović, Milan</au><au>Radulovic, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness</atitle><jtitle>Biomarkers in medicine</jtitle><addtitle>Biomark Med</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>15</volume><issue>12</issue><spage>929</spage><epage>940</epage><pages>929-940</pages><issn>1752-0363</issn><eissn>1752-0371</eissn><abstract>This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p &lt;0.001), followed by   Y-axis intersection of the regression line  for  box fractal dimension, r²  for  FD and tumor circularity. This is the first full-scale study to indicate that computational analysis of pretreatment MRIs could provide imaging biomarkers for the classification of osteosarcoma according to their chemoresponsiveness. Fractal analysis of MRI scans was shown to predict the chemosensitivity of osteosarcoma. These findings may eventually lead to improved patient survival by enabling personalized cytotoxic chemotherapy prescription.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>34236239</pmid><doi>10.2217/bmm-2020-0876</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8448-9234</orcidid><orcidid>https://orcid.org/0000-0003-0607-2462</orcidid><orcidid>https://orcid.org/0000-0002-8066-5701</orcidid><orcidid>https://orcid.org/0000-0002-6496-2220</orcidid><orcidid>https://orcid.org/0000-0002-2314-7457</orcidid><orcidid>https://orcid.org/0000-0002-0589-1848</orcidid><orcidid>https://orcid.org/0000-0002-5554-043X</orcidid><orcidid>https://orcid.org/0000-0002-3845-3780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0363
ispartof Biomarkers in medicine, 2021-08, Vol.15 (12), p.929-940
issn 1752-0363
1752-0371
language eng
recordid cdi_proquest_miscellaneous_2549690362
source PubMed Central
subjects cancer
computational image analysis
cytotoxic chemotherapy
fractal analysis
medical image analysis
MRI
osteosarcoma
prediction
prognosis
tumor circularity
title Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20analysis%20of%20MRIs%20predicts%20osteosarcoma%20chemoresponsiveness&rft.jtitle=Biomarkers%20in%20medicine&rft.au=Djuri%C4%8Di%C4%87,%20Goran%20J&rft.date=2021-08-01&rft.volume=15&rft.issue=12&rft.spage=929&rft.epage=940&rft.pages=929-940&rft.issn=1752-0363&rft.eissn=1752-0371&rft_id=info:doi/10.2217/bmm-2020-0876&rft_dat=%3Cproquest_cross%3E2549690362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549690362&rft_id=info:pmid/34236239&rfr_iscdi=true