Heart rate variability predicts decline in sensorimotor rhythm control

Objective. Voluntary control of sensorimotor rhythms (SMRs, 8–12 Hz) can be used for brain–computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2021-08, Vol.18 (4), p.460
Hauptverfasser: Nann, Marius, Haslacher, David, Colucci, Annalisa, Eskofier, Bjoern, von Tscharner, Vinzenz, Soekadar, Surjo R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 460
container_title Journal of neural engineering
container_volume 18
creator Nann, Marius
Haslacher, David
Colucci, Annalisa
Eskofier, Bjoern
von Tscharner, Vinzenz
Soekadar, Surjo R
description Objective. Voluntary control of sensorimotor rhythms (SMRs, 8–12 Hz) can be used for brain–computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man–machine interaction scheme. Approach. Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased. Main results. While control performance ( p = .18) and HRV ( p = .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: −0.61%/10 s, p = 0; HRV: −0.007 ms/10 s, p < .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level ( p < .001). Significance. These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.
doi_str_mv 10.1088/1741-2552/ac1177
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2549205839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549205839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-45e986428b9332df5be811f5a2c2f4f149567b1f50afa5ac4f5ee12723ec971d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt3j7npwbX53M0epVgVCl70HLLZCU3ZbtYkFfrv3bLSk3iaYXjeYeZB6JaSR0qUWtBK0IJJyRbGUlpVZ2h2Gp2f-pJcoquUtoRwWtVkhlavYGLG0WTA3yZ60_jO5wMeIrTe5oRbsJ3vAfseJ-hTiH4Xcog4bg55s8M29DmG7hpdONMluPmtc_S5ev5Yvhbr95e35dO6sFxVuRASalUKppqac9Y62YCi1EnDLHPCUVHLsmrGATHOSGOFkwCUVYyDrSva8jm6n_YOMXztIWW988lC15kewj5pJkXNiFS8HlEyoTaGlCI4PYy3m3jQlOijMn10oo9-9KRsjDxMER8GvQ372I-__Iff_YFve9BUaaGJKEkj9dA6_gPAj3pG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549205839</pqid></control><display><type>article</type><title>Heart rate variability predicts decline in sensorimotor rhythm control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nann, Marius ; Haslacher, David ; Colucci, Annalisa ; Eskofier, Bjoern ; von Tscharner, Vinzenz ; Soekadar, Surjo R</creator><creatorcontrib>Nann, Marius ; Haslacher, David ; Colucci, Annalisa ; Eskofier, Bjoern ; von Tscharner, Vinzenz ; Soekadar, Surjo R</creatorcontrib><description>Objective. Voluntary control of sensorimotor rhythms (SMRs, 8–12 Hz) can be used for brain–computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man–machine interaction scheme. Approach. Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased. Main results. While control performance ( p = .18) and HRV ( p = .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: −0.61%/10 s, p = 0; HRV: −0.007 ms/10 s, p &lt; .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level ( p &lt; .001). Significance. These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac1177</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>BCI ; brain–computer interface ; Granger causality ; heart rate variability ; HRV ; sensorimotor rhythms ; SMR</subject><ispartof>Journal of neural engineering, 2021-08, Vol.18 (4), p.460</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-45e986428b9332df5be811f5a2c2f4f149567b1f50afa5ac4f5ee12723ec971d3</citedby><cites>FETCH-LOGICAL-c387t-45e986428b9332df5be811f5a2c2f4f149567b1f50afa5ac4f5ee12723ec971d3</cites><orcidid>0000-0002-8936-944X ; 0000-0003-4380-3922 ; 0000-0002-0417-0336 ; 0000-0003-1280-5538 ; 0000-0002-5779-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac1177/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Nann, Marius</creatorcontrib><creatorcontrib>Haslacher, David</creatorcontrib><creatorcontrib>Colucci, Annalisa</creatorcontrib><creatorcontrib>Eskofier, Bjoern</creatorcontrib><creatorcontrib>von Tscharner, Vinzenz</creatorcontrib><creatorcontrib>Soekadar, Surjo R</creatorcontrib><title>Heart rate variability predicts decline in sensorimotor rhythm control</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. Voluntary control of sensorimotor rhythms (SMRs, 8–12 Hz) can be used for brain–computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man–machine interaction scheme. Approach. Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased. Main results. While control performance ( p = .18) and HRV ( p = .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: −0.61%/10 s, p = 0; HRV: −0.007 ms/10 s, p &lt; .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level ( p &lt; .001). Significance. These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.</description><subject>BCI</subject><subject>brain–computer interface</subject><subject>Granger causality</subject><subject>heart rate variability</subject><subject>HRV</subject><subject>sensorimotor rhythms</subject><subject>SMR</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kE1LAzEQhoMoWKt3j7npwbX53M0epVgVCl70HLLZCU3ZbtYkFfrv3bLSk3iaYXjeYeZB6JaSR0qUWtBK0IJJyRbGUlpVZ2h2Gp2f-pJcoquUtoRwWtVkhlavYGLG0WTA3yZ60_jO5wMeIrTe5oRbsJ3vAfseJ-hTiH4Xcog4bg55s8M29DmG7hpdONMluPmtc_S5ev5Yvhbr95e35dO6sFxVuRASalUKppqac9Y62YCi1EnDLHPCUVHLsmrGATHOSGOFkwCUVYyDrSva8jm6n_YOMXztIWW988lC15kewj5pJkXNiFS8HlEyoTaGlCI4PYy3m3jQlOijMn10oo9-9KRsjDxMER8GvQ372I-__Iff_YFve9BUaaGJKEkj9dA6_gPAj3pG</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nann, Marius</creator><creator>Haslacher, David</creator><creator>Colucci, Annalisa</creator><creator>Eskofier, Bjoern</creator><creator>von Tscharner, Vinzenz</creator><creator>Soekadar, Surjo R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8936-944X</orcidid><orcidid>https://orcid.org/0000-0003-4380-3922</orcidid><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1280-5538</orcidid><orcidid>https://orcid.org/0000-0002-5779-6244</orcidid></search><sort><creationdate>20210801</creationdate><title>Heart rate variability predicts decline in sensorimotor rhythm control</title><author>Nann, Marius ; Haslacher, David ; Colucci, Annalisa ; Eskofier, Bjoern ; von Tscharner, Vinzenz ; Soekadar, Surjo R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-45e986428b9332df5be811f5a2c2f4f149567b1f50afa5ac4f5ee12723ec971d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BCI</topic><topic>brain–computer interface</topic><topic>Granger causality</topic><topic>heart rate variability</topic><topic>HRV</topic><topic>sensorimotor rhythms</topic><topic>SMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nann, Marius</creatorcontrib><creatorcontrib>Haslacher, David</creatorcontrib><creatorcontrib>Colucci, Annalisa</creatorcontrib><creatorcontrib>Eskofier, Bjoern</creatorcontrib><creatorcontrib>von Tscharner, Vinzenz</creatorcontrib><creatorcontrib>Soekadar, Surjo R</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nann, Marius</au><au>Haslacher, David</au><au>Colucci, Annalisa</au><au>Eskofier, Bjoern</au><au>von Tscharner, Vinzenz</au><au>Soekadar, Surjo R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heart rate variability predicts decline in sensorimotor rhythm control</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>18</volume><issue>4</issue><spage>460</spage><pages>460-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. Voluntary control of sensorimotor rhythms (SMRs, 8–12 Hz) can be used for brain–computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man–machine interaction scheme. Approach. Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased. Main results. While control performance ( p = .18) and HRV ( p = .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: −0.61%/10 s, p = 0; HRV: −0.007 ms/10 s, p &lt; .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level ( p &lt; .001). Significance. These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-2552/ac1177</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8936-944X</orcidid><orcidid>https://orcid.org/0000-0003-4380-3922</orcidid><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1280-5538</orcidid><orcidid>https://orcid.org/0000-0002-5779-6244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2021-08, Vol.18 (4), p.460
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_2549205839
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects BCI
brain–computer interface
Granger causality
heart rate variability
HRV
sensorimotor rhythms
SMR
title Heart rate variability predicts decline in sensorimotor rhythm control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heart%20rate%20variability%20predicts%20decline%20in%20sensorimotor%20rhythm%20control&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Nann,%20Marius&rft.date=2021-08-01&rft.volume=18&rft.issue=4&rft.spage=460&rft.pages=460-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ac1177&rft_dat=%3Cproquest_iop_j%3E2549205839%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549205839&rft_id=info:pmid/&rfr_iscdi=true