Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells

The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2021-10, Vol.21 (10), p.e2100113-n/a
Hauptverfasser: Oku, Keisuke, Ohno, Kyohei, Miyamoto, Daisuke, Ito, Koju, Yabu, Hiroshi, Nakazawa, Kohji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2100113
container_title Macromolecular bioscience
container_volume 21
creator Oku, Keisuke
Ohno, Kyohei
Miyamoto, Daisuke
Ito, Koju
Yabu, Hiroshi
Nakazawa, Kohji
description The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro. Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.
doi_str_mv 10.1002/mabi.202100113
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2549205365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582709691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZe5eJYlJLRSIyqFsh3ZnjOqiy_B9qgaVjwCj8Pz8CQ4mhIkNsgL-_z-zq9j_0XxkuAlwZi-tULqJcU0F4SwR8UpqUm9qEhbPT6eeXNSPIvxLiMNb-nT4oSVlBGGm9Pi53oYQCXkB3TtA6Cd_gaH4sI7mJS38tf3H9ciJQgO-oyYyUJAG20s8g7t9t4l4cCPEW18sCLprOZ2-h5ttQrZJN378CUiOaGVV6NJY5j9RyscurFSG62EQZ9BO7R2vU-3YHQWVmBMRML1aAsRnLqdbFZ3Cex89bx4MggT4cXDflbcbNafVheLq48fLlfnVwtVNi1bUCrrvHCFG05Zy3lJxNBgkLih9SBkjUuMlZSs7XnVlyXDVdUOhPO-Foqzhp0Vb2bfffBfR4ipszqqPMH87I5WZUtxxeoqo6__Qe_8GFyeLlOcNritW5Kp5Uzl74kxwNDtg7YiTB3B3SHT7pBpd8w0N7x6sB2lhf6I_wkxA-0M3GsD03_suu35u8u_5r8BROavOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582709691</pqid></control><display><type>article</type><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</creator><creatorcontrib>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</creatorcontrib><description>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro. Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202100113</identifier><identifier>PMID: 34231307</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Blood vessels ; Cell culture ; Centrifugal force ; Coculture Techniques ; Density ; Endothelial cells ; honeycomb‐patterned polymer film ; Horizontal orientation ; human umbilical vein endothelial cell ; Human Umbilical Vein Endothelial Cells ; Humans ; Lactic acid ; mesenchymal stem cell ; Mesenchymal Stem Cells ; micronetwork structure ; Polymer films ; Polymers ; Polymers - chemistry ; Polymers - pharmacology ; Pore size ; Scaffolds ; Stem cells ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Umbilical vein ; Veins ; Water drops</subject><ispartof>Macromolecular bioscience, 2021-10, Vol.21 (10), p.e2100113-n/a</ispartof><rights>2021 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</citedby><cites>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202100113$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202100113$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34231307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oku, Keisuke</creatorcontrib><creatorcontrib>Ohno, Kyohei</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Ito, Koju</creatorcontrib><creatorcontrib>Yabu, Hiroshi</creatorcontrib><creatorcontrib>Nakazawa, Kohji</creatorcontrib><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro. Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</description><subject>Blood vessels</subject><subject>Cell culture</subject><subject>Centrifugal force</subject><subject>Coculture Techniques</subject><subject>Density</subject><subject>Endothelial cells</subject><subject>honeycomb‐patterned polymer film</subject><subject>Horizontal orientation</subject><subject>human umbilical vein endothelial cell</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>mesenchymal stem cell</subject><subject>Mesenchymal Stem Cells</subject><subject>micronetwork structure</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><subject>Pore size</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Umbilical vein</subject><subject>Veins</subject><subject>Water drops</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZe5eJYlJLRSIyqFsh3ZnjOqiy_B9qgaVjwCj8Pz8CQ4mhIkNsgL-_z-zq9j_0XxkuAlwZi-tULqJcU0F4SwR8UpqUm9qEhbPT6eeXNSPIvxLiMNb-nT4oSVlBGGm9Pi53oYQCXkB3TtA6Cd_gaH4sI7mJS38tf3H9ciJQgO-oyYyUJAG20s8g7t9t4l4cCPEW18sCLprOZ2-h5ttQrZJN378CUiOaGVV6NJY5j9RyscurFSG62EQZ9BO7R2vU-3YHQWVmBMRML1aAsRnLqdbFZ3Cex89bx4MggT4cXDflbcbNafVheLq48fLlfnVwtVNi1bUCrrvHCFG05Zy3lJxNBgkLih9SBkjUuMlZSs7XnVlyXDVdUOhPO-Foqzhp0Vb2bfffBfR4ipszqqPMH87I5WZUtxxeoqo6__Qe_8GFyeLlOcNritW5Kp5Uzl74kxwNDtg7YiTB3B3SHT7pBpd8w0N7x6sB2lhf6I_wkxA-0M3GsD03_suu35u8u_5r8BROavOQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Oku, Keisuke</creator><creator>Ohno, Kyohei</creator><creator>Miyamoto, Daisuke</creator><creator>Ito, Koju</creator><creator>Yabu, Hiroshi</creator><creator>Nakazawa, Kohji</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><author>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels</topic><topic>Cell culture</topic><topic>Centrifugal force</topic><topic>Coculture Techniques</topic><topic>Density</topic><topic>Endothelial cells</topic><topic>honeycomb‐patterned polymer film</topic><topic>Horizontal orientation</topic><topic>human umbilical vein endothelial cell</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>mesenchymal stem cell</topic><topic>Mesenchymal Stem Cells</topic><topic>micronetwork structure</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><topic>Pore size</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Umbilical vein</topic><topic>Veins</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oku, Keisuke</creatorcontrib><creatorcontrib>Ohno, Kyohei</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Ito, Koju</creatorcontrib><creatorcontrib>Yabu, Hiroshi</creatorcontrib><creatorcontrib>Nakazawa, Kohji</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oku, Keisuke</au><au>Ohno, Kyohei</au><au>Miyamoto, Daisuke</au><au>Ito, Koju</au><au>Yabu, Hiroshi</au><au>Nakazawa, Kohji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2021-10</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>e2100113</spage><epage>n/a</epage><pages>e2100113-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro. Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34231307</pmid><doi>10.1002/mabi.202100113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2021-10, Vol.21 (10), p.e2100113-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2549205365
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Blood vessels
Cell culture
Centrifugal force
Coculture Techniques
Density
Endothelial cells
honeycomb‐patterned polymer film
Horizontal orientation
human umbilical vein endothelial cell
Human Umbilical Vein Endothelial Cells
Humans
Lactic acid
mesenchymal stem cell
Mesenchymal Stem Cells
micronetwork structure
Polymer films
Polymers
Polymers - chemistry
Polymers - pharmacology
Pore size
Scaffolds
Stem cells
Tissue Engineering
Tissue Scaffolds - chemistry
Umbilical vein
Veins
Water drops
title Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pore%20Size%20of%20Honeycomb%E2%80%90Patterned%20Polymer%20Film%20on%20Spontaneous%20Formation%20of%202D%20Micronetworks%20by%20Coculture%20of%20Human%20Umbilical%20Vein%20Endothelial%20Cells%20and%20Mesenchymal%20Stem%20Cells&rft.jtitle=Macromolecular%20bioscience&rft.au=Oku,%20Keisuke&rft.date=2021-10&rft.volume=21&rft.issue=10&rft.spage=e2100113&rft.epage=n/a&rft.pages=e2100113-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202100113&rft_dat=%3Cproquest_cross%3E2582709691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582709691&rft_id=info:pmid/34231307&rfr_iscdi=true