Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells
The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs an...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2021-10, Vol.21 (10), p.e2100113-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e2100113 |
container_title | Macromolecular bioscience |
container_volume | 21 |
creator | Oku, Keisuke Ohno, Kyohei Miyamoto, Daisuke Ito, Koju Yabu, Hiroshi Nakazawa, Kohji |
description | The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.
Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system. |
doi_str_mv | 10.1002/mabi.202100113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2549205365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582709691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</originalsourceid><addsrcrecordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZe5eJYlJLRSIyqFsh3ZnjOqiy_B9qgaVjwCj8Pz8CQ4mhIkNsgL-_z-zq9j_0XxkuAlwZi-tULqJcU0F4SwR8UpqUm9qEhbPT6eeXNSPIvxLiMNb-nT4oSVlBGGm9Pi53oYQCXkB3TtA6Cd_gaH4sI7mJS38tf3H9ciJQgO-oyYyUJAG20s8g7t9t4l4cCPEW18sCLprOZ2-h5ttQrZJN378CUiOaGVV6NJY5j9RyscurFSG62EQZ9BO7R2vU-3YHQWVmBMRML1aAsRnLqdbFZ3Cex89bx4MggT4cXDflbcbNafVheLq48fLlfnVwtVNi1bUCrrvHCFG05Zy3lJxNBgkLih9SBkjUuMlZSs7XnVlyXDVdUOhPO-Foqzhp0Vb2bfffBfR4ipszqqPMH87I5WZUtxxeoqo6__Qe_8GFyeLlOcNritW5Kp5Uzl74kxwNDtg7YiTB3B3SHT7pBpd8w0N7x6sB2lhf6I_wkxA-0M3GsD03_suu35u8u_5r8BROavOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582709691</pqid></control><display><type>article</type><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</creator><creatorcontrib>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</creatorcontrib><description>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.
Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202100113</identifier><identifier>PMID: 34231307</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Blood vessels ; Cell culture ; Centrifugal force ; Coculture Techniques ; Density ; Endothelial cells ; honeycomb‐patterned polymer film ; Horizontal orientation ; human umbilical vein endothelial cell ; Human Umbilical Vein Endothelial Cells ; Humans ; Lactic acid ; mesenchymal stem cell ; Mesenchymal Stem Cells ; micronetwork structure ; Polymer films ; Polymers ; Polymers - chemistry ; Polymers - pharmacology ; Pore size ; Scaffolds ; Stem cells ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Umbilical vein ; Veins ; Water drops</subject><ispartof>Macromolecular bioscience, 2021-10, Vol.21 (10), p.e2100113-n/a</ispartof><rights>2021 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</citedby><cites>FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202100113$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202100113$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34231307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oku, Keisuke</creatorcontrib><creatorcontrib>Ohno, Kyohei</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Ito, Koju</creatorcontrib><creatorcontrib>Yabu, Hiroshi</creatorcontrib><creatorcontrib>Nakazawa, Kohji</creatorcontrib><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.
Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</description><subject>Blood vessels</subject><subject>Cell culture</subject><subject>Centrifugal force</subject><subject>Coculture Techniques</subject><subject>Density</subject><subject>Endothelial cells</subject><subject>honeycomb‐patterned polymer film</subject><subject>Horizontal orientation</subject><subject>human umbilical vein endothelial cell</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Lactic acid</subject><subject>mesenchymal stem cell</subject><subject>Mesenchymal Stem Cells</subject><subject>micronetwork structure</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><subject>Pore size</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Umbilical vein</subject><subject>Veins</subject><subject>Water drops</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhkcIREthyxJZYsMmwZe5eJYlJLRSIyqFsh3ZnjOqiy_B9qgaVjwCj8Pz8CQ4mhIkNsgL-_z-zq9j_0XxkuAlwZi-tULqJcU0F4SwR8UpqUm9qEhbPT6eeXNSPIvxLiMNb-nT4oSVlBGGm9Pi53oYQCXkB3TtA6Cd_gaH4sI7mJS38tf3H9ciJQgO-oyYyUJAG20s8g7t9t4l4cCPEW18sCLprOZ2-h5ttQrZJN378CUiOaGVV6NJY5j9RyscurFSG62EQZ9BO7R2vU-3YHQWVmBMRML1aAsRnLqdbFZ3Cex89bx4MggT4cXDflbcbNafVheLq48fLlfnVwtVNi1bUCrrvHCFG05Zy3lJxNBgkLih9SBkjUuMlZSs7XnVlyXDVdUOhPO-Foqzhp0Vb2bfffBfR4ipszqqPMH87I5WZUtxxeoqo6__Qe_8GFyeLlOcNritW5Kp5Uzl74kxwNDtg7YiTB3B3SHT7pBpd8w0N7x6sB2lhf6I_wkxA-0M3GsD03_suu35u8u_5r8BROavOQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Oku, Keisuke</creator><creator>Ohno, Kyohei</creator><creator>Miyamoto, Daisuke</creator><creator>Ito, Koju</creator><creator>Yabu, Hiroshi</creator><creator>Nakazawa, Kohji</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</title><author>Oku, Keisuke ; Ohno, Kyohei ; Miyamoto, Daisuke ; Ito, Koju ; Yabu, Hiroshi ; Nakazawa, Kohji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4793-22b6b6b050782398841af70eb0726fab60400cbb39d85d4430559f188d6ac8373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels</topic><topic>Cell culture</topic><topic>Centrifugal force</topic><topic>Coculture Techniques</topic><topic>Density</topic><topic>Endothelial cells</topic><topic>honeycomb‐patterned polymer film</topic><topic>Horizontal orientation</topic><topic>human umbilical vein endothelial cell</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Lactic acid</topic><topic>mesenchymal stem cell</topic><topic>Mesenchymal Stem Cells</topic><topic>micronetwork structure</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><topic>Pore size</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Umbilical vein</topic><topic>Veins</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oku, Keisuke</creatorcontrib><creatorcontrib>Ohno, Kyohei</creatorcontrib><creatorcontrib>Miyamoto, Daisuke</creatorcontrib><creatorcontrib>Ito, Koju</creatorcontrib><creatorcontrib>Yabu, Hiroshi</creatorcontrib><creatorcontrib>Nakazawa, Kohji</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oku, Keisuke</au><au>Ohno, Kyohei</au><au>Miyamoto, Daisuke</au><au>Ito, Koju</au><au>Yabu, Hiroshi</au><au>Nakazawa, Kohji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2021-10</date><risdate>2021</risdate><volume>21</volume><issue>10</issue><spage>e2100113</spage><epage>n/a</epage><pages>e2100113-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The geometrical control of micronetwork structures (μNSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, μNSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐l‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in μNS formation when the pore size is more than 20 μm. Furthermore, μNS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that μNSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.
Micronetwork structures of cocultured human umbilical vein endothelial cells and mesenchymal stem cells are successfully formed within the pores of honeycomb‐patterned poly‐l‐lactic acid films. The results indicate that structurally well‐controlled tailored capillary networks can be obtained using the films and used as a cell culture platform for oxygen‐requiring organoids and for evaluating cell–cell interactions throughout the vascular system.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34231307</pmid><doi>10.1002/mabi.202100113</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2021-10, Vol.21 (10), p.e2100113-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2549205365 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Blood vessels Cell culture Centrifugal force Coculture Techniques Density Endothelial cells honeycomb‐patterned polymer film Horizontal orientation human umbilical vein endothelial cell Human Umbilical Vein Endothelial Cells Humans Lactic acid mesenchymal stem cell Mesenchymal Stem Cells micronetwork structure Polymer films Polymers Polymers - chemistry Polymers - pharmacology Pore size Scaffolds Stem cells Tissue Engineering Tissue Scaffolds - chemistry Umbilical vein Veins Water drops |
title | Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Pore%20Size%20of%20Honeycomb%E2%80%90Patterned%20Polymer%20Film%20on%20Spontaneous%20Formation%20of%202D%20Micronetworks%20by%20Coculture%20of%20Human%20Umbilical%20Vein%20Endothelial%20Cells%20and%20Mesenchymal%20Stem%20Cells&rft.jtitle=Macromolecular%20bioscience&rft.au=Oku,%20Keisuke&rft.date=2021-10&rft.volume=21&rft.issue=10&rft.spage=e2100113&rft.epage=n/a&rft.pages=e2100113-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202100113&rft_dat=%3Cproquest_cross%3E2582709691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582709691&rft_id=info:pmid/34231307&rfr_iscdi=true |