Online Monitoring of Transition-Metal Dissolution from a High-Ni-Content Cathode Material

The dissolution of transition metals (TMs) from cathode materials and their deposition on the anode represents a serious degradation process and, with that, a shortcoming of lithium-ion batteries. It occurs particularly at high charge voltages (>4.3 V), contributing to severe capacity loss and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-07, Vol.13 (28), p.33075-33082
Hauptverfasser: Wachs, Susanne J, Behling, Christopher, Ranninger, Johanna, Möller, Jonas, Mayrhofer, Karl J. J, Berkes, Balázs B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dissolution of transition metals (TMs) from cathode materials and their deposition on the anode represents a serious degradation process and, with that, a shortcoming of lithium-ion batteries. It occurs particularly at high charge voltages (>4.3 V), contributing to severe capacity loss and thus impeding the increase of cell voltage as a simple measure to increase energy density. We present here for the first time the online detection of dissolved TMs from a Ni-rich layered oxide cathode material with unprecedented potential and time resolution in potentiodynamic scans. To this aid, we used the coupling of an electroanalytical flow cell (EFC) with inductively coupled plasma mass spectrometry (ICP-MS), which is demonstrated to be an ideal tool for a fast performance assessment of new cathode materials from initial cycles. The simultaneous analysis of electrochemical and dissolution data allows hitherto hidden insights into the processes’ characteristics and underlying mechanisms.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c07932