Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks

Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-08, Vol.13 (8), p.771-777
Hauptverfasser: Jablonka, Kevin Maik, Ongari, Daniele, Moosavi, Seyed Mohamad, Smit, Berend
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 8
container_start_page 771
container_title Nature chemistry
container_volume 13
creator Jablonka, Kevin Maik
Ongari, Daniele
Moosavi, Seyed Mohamad
Smit, Berend
description Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal–organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal–organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool. Oxidation states help chemists to understand the bonding, properties and reactivity of compounds, but they can be difficult to determine for metal ions in extended crystalline materials. Now, oxidation states manually assigned to metal–organic frameworks have been harvested from the Cambridge Structural Database and used to build a machine-learning model that predicts oxidation states in metal–organic frameworks with good accuracy.
doi_str_mv 10.1038/s41557-021-00717-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548913812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548913812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-19cf606f3407e2476f7063f790a1332da6b072b554b03c28ab5931dc9ebee103</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoqXtC7BAltiwCfjuZIkqblKlbsracpxJ5DaxiyeHcna8A2_Ik-A2pUhdsJrRzDf_jOYn5CVnbzmT7TtUXGvbMMEbxiy3zf4JOeRW60ZJ1T19yCU7IC8QLxkzWnLznBxIJYSxTB6S4SvGNNGQ5xnCGr8DvUr5ZoZhArpm6hHjlGj-EQe_xpworn4FpHmkC6x-puGujDSmrfD7569cJp9ioGPxC9zkcoXH5NnoZ4ST-3hELj5-uDj93Jydf_py-v6sCYp3a8O7MBpmRqmYBaGsGS0zcrQd81xKMXjTMyt6rVXPZBCt73Un-RA66AHqR47Im032uuRvO8DVLREDzLNPkHfohFZtx2XLRUVfP0Iv866kelyltLkFWVspsVGhZMQCo7sucfFl7zhztxa4zQJXLXB3Frh9HXp1L73rFxgeRv7-vAJyA7C20gTl3-7_yP4BF-GTYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556548908</pqid></control><display><type>article</type><title>Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jablonka, Kevin Maik ; Ongari, Daniele ; Moosavi, Seyed Mohamad ; Smit, Berend</creator><creatorcontrib>Jablonka, Kevin Maik ; Ongari, Daniele ; Moosavi, Seyed Mohamad ; Smit, Berend</creatorcontrib><description>Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal–organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal–organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool. Oxidation states help chemists to understand the bonding, properties and reactivity of compounds, but they can be difficult to determine for metal ions in extended crystalline materials. Now, oxidation states manually assigned to metal–organic frameworks have been harvested from the Cambridge Structural Database and used to build a machine-learning model that predicts oxidation states in metal–organic frameworks with good accuracy.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00717-y</identifier><identifier>PMID: 34226703</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638 ; 639/638/298/921 ; 639/638/563/606 ; Analytical Chemistry ; Biochemistry ; Cations ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chemists ; Crystal structure ; Crystallinity ; Inorganic Chemistry ; Ions ; Learning algorithms ; Machine learning ; Metal ions ; Metal-organic frameworks ; Organic Chemistry ; Oxidation ; Physical Chemistry ; Protonation ; Valence</subject><ispartof>Nature chemistry, 2021-08, Vol.13 (8), p.771-777</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-19cf606f3407e2476f7063f790a1332da6b072b554b03c28ab5931dc9ebee103</citedby><cites>FETCH-LOGICAL-c419t-19cf606f3407e2476f7063f790a1332da6b072b554b03c28ab5931dc9ebee103</cites><orcidid>0000-0003-4653-8562 ; 0000-0002-0357-5729 ; 0000-0001-6197-2901 ; 0000-0003-4894-4660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-021-00717-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-021-00717-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34226703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jablonka, Kevin Maik</creatorcontrib><creatorcontrib>Ongari, Daniele</creatorcontrib><creatorcontrib>Moosavi, Seyed Mohamad</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><title>Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal–organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal–organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool. Oxidation states help chemists to understand the bonding, properties and reactivity of compounds, but they can be difficult to determine for metal ions in extended crystalline materials. Now, oxidation states manually assigned to metal–organic frameworks have been harvested from the Cambridge Structural Database and used to build a machine-learning model that predicts oxidation states in metal–organic frameworks with good accuracy.</description><subject>639/638</subject><subject>639/638/298/921</subject><subject>639/638/563/606</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Cations</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chemists</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Inorganic Chemistry</subject><subject>Ions</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Metal ions</subject><subject>Metal-organic frameworks</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Protonation</subject><subject>Valence</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctu1TAQhi0EoqXtC7BAltiwCfjuZIkqblKlbsracpxJ5DaxiyeHcna8A2_Ik-A2pUhdsJrRzDf_jOYn5CVnbzmT7TtUXGvbMMEbxiy3zf4JOeRW60ZJ1T19yCU7IC8QLxkzWnLznBxIJYSxTB6S4SvGNNGQ5xnCGr8DvUr5ZoZhArpm6hHjlGj-EQe_xpworn4FpHmkC6x-puGujDSmrfD7569cJp9ioGPxC9zkcoXH5NnoZ4ST-3hELj5-uDj93Jydf_py-v6sCYp3a8O7MBpmRqmYBaGsGS0zcrQd81xKMXjTMyt6rVXPZBCt73Un-RA66AHqR47Im032uuRvO8DVLREDzLNPkHfohFZtx2XLRUVfP0Iv866kelyltLkFWVspsVGhZMQCo7sucfFl7zhztxa4zQJXLXB3Frh9HXp1L73rFxgeRv7-vAJyA7C20gTl3-7_yP4BF-GTYA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Jablonka, Kevin Maik</creator><creator>Ongari, Daniele</creator><creator>Moosavi, Seyed Mohamad</creator><creator>Smit, Berend</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-0357-5729</orcidid><orcidid>https://orcid.org/0000-0001-6197-2901</orcidid><orcidid>https://orcid.org/0000-0003-4894-4660</orcidid></search><sort><creationdate>20210801</creationdate><title>Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks</title><author>Jablonka, Kevin Maik ; Ongari, Daniele ; Moosavi, Seyed Mohamad ; Smit, Berend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-19cf606f3407e2476f7063f790a1332da6b072b554b03c28ab5931dc9ebee103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638</topic><topic>639/638/298/921</topic><topic>639/638/563/606</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Cations</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chemists</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Inorganic Chemistry</topic><topic>Ions</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Metal ions</topic><topic>Metal-organic frameworks</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Protonation</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jablonka, Kevin Maik</creatorcontrib><creatorcontrib>Ongari, Daniele</creatorcontrib><creatorcontrib>Moosavi, Seyed Mohamad</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jablonka, Kevin Maik</au><au>Ongari, Daniele</au><au>Moosavi, Seyed Mohamad</au><au>Smit, Berend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>13</volume><issue>8</issue><spage>771</spage><epage>777</epage><pages>771-777</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Knowledge of the oxidation state of metal centres in compounds and materials helps in the understanding of their chemical bonding and properties. Chemists have developed theories to predict oxidation states based on electron-counting rules, but these can fail to describe oxidation states in extended crystalline systems such as metal–organic frameworks. Here we propose the use of a machine-learning model, trained on assignments by chemists encoded in the chemical names in the Cambridge Structural Database, to automatically assign oxidation states to the metal ions in metal–organic frameworks. In our approach, only the immediate local environment around a metal centre is considered. We show that the strategy is robust to experimental uncertainties such as incorrect protonation, unbound solvents or changes in bond length. This method gives good accuracy and we show that it can be used to detect incorrect assignments in the Cambridge Structural Database, illustrating how collective knowledge can be captured by machine learning and converted into a useful tool. Oxidation states help chemists to understand the bonding, properties and reactivity of compounds, but they can be difficult to determine for metal ions in extended crystalline materials. Now, oxidation states manually assigned to metal–organic frameworks have been harvested from the Cambridge Structural Database and used to build a machine-learning model that predicts oxidation states in metal–organic frameworks with good accuracy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34226703</pmid><doi>10.1038/s41557-021-00717-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-0357-5729</orcidid><orcidid>https://orcid.org/0000-0001-6197-2901</orcidid><orcidid>https://orcid.org/0000-0003-4894-4660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-08, Vol.13 (8), p.771-777
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2548913812
source SpringerLink Journals; Nature Journals Online
subjects 639/638
639/638/298/921
639/638/563/606
Analytical Chemistry
Biochemistry
Cations
Chemical bonds
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chemists
Crystal structure
Crystallinity
Inorganic Chemistry
Ions
Learning algorithms
Machine learning
Metal ions
Metal-organic frameworks
Organic Chemistry
Oxidation
Physical Chemistry
Protonation
Valence
title Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20collective%20knowledge%20to%20assign%20oxidation%20states%20of%20metal%20cations%20in%20metal%E2%80%93organic%20frameworks&rft.jtitle=Nature%20chemistry&rft.au=Jablonka,%20Kevin%20Maik&rft.date=2021-08-01&rft.volume=13&rft.issue=8&rft.spage=771&rft.epage=777&rft.pages=771-777&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00717-y&rft_dat=%3Cproquest_cross%3E2548913812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556548908&rft_id=info:pmid/34226703&rfr_iscdi=true