Universal two‐point interaction of mediator KIX with 9aaTAD activation domains

The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2021-10, Vol.122 (10), p.1544-1555
Hauptverfasser: Hofrova, Alena, Lousa, Petr, Kubickova, Monika, Hritz, Jozef, Otasevic, Tomas, Repko, Martin, Knight, Andrea, Piskacek, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 10
container_start_page 1544
container_title Journal of cellular biochemistry
container_volume 122
creator Hofrova, Alena
Lousa, Petr
Kubickova, Monika
Hritz, Jozef
Otasevic, Tomas
Repko, Martin
Knight, Andrea
Piskacek, Martin
description The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.
doi_str_mv 10.1002/jcb.30075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548908658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548908658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</originalsourceid><addsrcrecordid>eNp10MtKxDAYhuEgio6HhTcgBTe6qP45tGmWOp4VdDGCu5KmfzFDpxmTjoM7L8Fr9EqMjroQJIRsHj7CS8g2hQMKwA7HpjrgADJbIgMKSqYiF2KZDEBySBmnbI2shzAGAKU4WyVrXDAmMiUH5O6-s8_og26Tfu7eX9-mznZ9Ei96bXrrusQ1yQRrq3vnk-vLh2Ru-8dEaT06Okk-ybP-YrWbaNuFTbLS6Dbg1ve7QUZnp6PhRXpze345PLpJDc94llamqmkD2MgCQWmlUai8USYzjDOJAhByXphaClljlWGtOSsob1DoeJBvkL3F7NS7pxmGvpzYYLBtdYduFkqWiUJBkWdFpLt_6NjNfBc_F5XMc0aBQlT7C2W8C8FjU069nWj_UlIoPyuXsXL5VTnane_FWRXT_MqfrBEcLsDctvjy_1J5NTxeTH4A8UmGsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576621010</pqid></control><display><type>article</type><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</creator><creatorcontrib>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</creatorcontrib><description>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.30075</identifier><identifier>PMID: 34224597</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>9aaTAD ; activation domain ; Amino Acid Motifs ; Amino acids ; Basic Helix-Loop-Helix Transcription Factors - chemistry ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Binding ; Binding Sites ; CREB-Binding Protein - chemistry ; CREB-Binding Protein - metabolism ; Domains ; E2A ; Free energy ; Histone-Lysine N-Methyltransferase - chemistry ; Histone-Lysine N-Methyltransferase - metabolism ; Humans ; Hydrophobicity ; KIX ; MLL ; Myeloid-Lymphoid Leukemia Protein - chemistry ; Myeloid-Lymphoid Leukemia Protein - metabolism ; NF-kappa B - chemistry ; NF-kappa B - metabolism ; NMR ; Nuclear magnetic resonance ; p53 ; p53 Protein ; Protein Binding ; Protein Interaction Domains and Motifs ; Residues ; Solvents ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Journal of cellular biochemistry, 2021-10, Vol.122 (10), p.1544-1555</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</citedby><cites>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</cites><orcidid>0000-0002-6283-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.30075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.30075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34224597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofrova, Alena</creatorcontrib><creatorcontrib>Lousa, Petr</creatorcontrib><creatorcontrib>Kubickova, Monika</creatorcontrib><creatorcontrib>Hritz, Jozef</creatorcontrib><creatorcontrib>Otasevic, Tomas</creatorcontrib><creatorcontrib>Repko, Martin</creatorcontrib><creatorcontrib>Knight, Andrea</creatorcontrib><creatorcontrib>Piskacek, Martin</creatorcontrib><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><title>Journal of cellular biochemistry</title><addtitle>J Cell Biochem</addtitle><description>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</description><subject>9aaTAD</subject><subject>activation domain</subject><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Basic Helix-Loop-Helix Transcription Factors - chemistry</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>CREB-Binding Protein - chemistry</subject><subject>CREB-Binding Protein - metabolism</subject><subject>Domains</subject><subject>E2A</subject><subject>Free energy</subject><subject>Histone-Lysine N-Methyltransferase - chemistry</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>KIX</subject><subject>MLL</subject><subject>Myeloid-Lymphoid Leukemia Protein - chemistry</subject><subject>Myeloid-Lymphoid Leukemia Protein - metabolism</subject><subject>NF-kappa B - chemistry</subject><subject>NF-kappa B - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>p53</subject><subject>p53 Protein</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Residues</subject><subject>Solvents</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtKxDAYhuEgio6HhTcgBTe6qP45tGmWOp4VdDGCu5KmfzFDpxmTjoM7L8Fr9EqMjroQJIRsHj7CS8g2hQMKwA7HpjrgADJbIgMKSqYiF2KZDEBySBmnbI2shzAGAKU4WyVrXDAmMiUH5O6-s8_og26Tfu7eX9-mznZ9Ei96bXrrusQ1yQRrq3vnk-vLh2Ru-8dEaT06Okk-ybP-YrWbaNuFTbLS6Dbg1ve7QUZnp6PhRXpze345PLpJDc94llamqmkD2MgCQWmlUai8USYzjDOJAhByXphaClljlWGtOSsob1DoeJBvkL3F7NS7pxmGvpzYYLBtdYduFkqWiUJBkWdFpLt_6NjNfBc_F5XMc0aBQlT7C2W8C8FjU069nWj_UlIoPyuXsXL5VTnane_FWRXT_MqfrBEcLsDctvjy_1J5NTxeTH4A8UmGsw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Hofrova, Alena</creator><creator>Lousa, Petr</creator><creator>Kubickova, Monika</creator><creator>Hritz, Jozef</creator><creator>Otasevic, Tomas</creator><creator>Repko, Martin</creator><creator>Knight, Andrea</creator><creator>Piskacek, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6283-1542</orcidid></search><sort><creationdate>202110</creationdate><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><author>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>9aaTAD</topic><topic>activation domain</topic><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Basic Helix-Loop-Helix Transcription Factors - chemistry</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>CREB-Binding Protein - chemistry</topic><topic>CREB-Binding Protein - metabolism</topic><topic>Domains</topic><topic>E2A</topic><topic>Free energy</topic><topic>Histone-Lysine N-Methyltransferase - chemistry</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>KIX</topic><topic>MLL</topic><topic>Myeloid-Lymphoid Leukemia Protein - chemistry</topic><topic>Myeloid-Lymphoid Leukemia Protein - metabolism</topic><topic>NF-kappa B - chemistry</topic><topic>NF-kappa B - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>p53</topic><topic>p53 Protein</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Residues</topic><topic>Solvents</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofrova, Alena</creatorcontrib><creatorcontrib>Lousa, Petr</creatorcontrib><creatorcontrib>Kubickova, Monika</creatorcontrib><creatorcontrib>Hritz, Jozef</creatorcontrib><creatorcontrib>Otasevic, Tomas</creatorcontrib><creatorcontrib>Repko, Martin</creatorcontrib><creatorcontrib>Knight, Andrea</creatorcontrib><creatorcontrib>Piskacek, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofrova, Alena</au><au>Lousa, Petr</au><au>Kubickova, Monika</au><au>Hritz, Jozef</au><au>Otasevic, Tomas</au><au>Repko, Martin</au><au>Knight, Andrea</au><au>Piskacek, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J Cell Biochem</addtitle><date>2021-10</date><risdate>2021</risdate><volume>122</volume><issue>10</issue><spage>1544</spage><epage>1555</epage><pages>1544-1555</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34224597</pmid><doi>10.1002/jcb.30075</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6283-1542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2021-10, Vol.122 (10), p.1544-1555
issn 0730-2312
1097-4644
language eng
recordid cdi_proquest_miscellaneous_2548908658
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 9aaTAD
activation domain
Amino Acid Motifs
Amino acids
Basic Helix-Loop-Helix Transcription Factors - chemistry
Basic Helix-Loop-Helix Transcription Factors - metabolism
Binding
Binding Sites
CREB-Binding Protein - chemistry
CREB-Binding Protein - metabolism
Domains
E2A
Free energy
Histone-Lysine N-Methyltransferase - chemistry
Histone-Lysine N-Methyltransferase - metabolism
Humans
Hydrophobicity
KIX
MLL
Myeloid-Lymphoid Leukemia Protein - chemistry
Myeloid-Lymphoid Leukemia Protein - metabolism
NF-kappa B - chemistry
NF-kappa B - metabolism
NMR
Nuclear magnetic resonance
p53
p53 Protein
Protein Binding
Protein Interaction Domains and Motifs
Residues
Solvents
Transcription factors
Transcription Factors - chemistry
Transcription Factors - metabolism
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - metabolism
title Universal two‐point interaction of mediator KIX with 9aaTAD activation domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20two%E2%80%90point%20interaction%20of%20mediator%20KIX%20with%209aaTAD%20activation%20domains&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Hofrova,%20Alena&rft.date=2021-10&rft.volume=122&rft.issue=10&rft.spage=1544&rft.epage=1555&rft.pages=1544-1555&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.30075&rft_dat=%3Cproquest_cross%3E2548908658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576621010&rft_id=info:pmid/34224597&rfr_iscdi=true