Universal two‐point interaction of mediator KIX with 9aaTAD activation domains
The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we ana...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2021-10, Vol.122 (10), p.1544-1555 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 10 |
container_start_page | 1544 |
container_title | Journal of cellular biochemistry |
container_volume | 122 |
creator | Hofrova, Alena Lousa, Petr Kubickova, Monika Hritz, Jozef Otasevic, Tomas Repko, Martin Knight, Andrea Piskacek, Martin |
description | The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability. |
doi_str_mv | 10.1002/jcb.30075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548908658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548908658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</originalsourceid><addsrcrecordid>eNp10MtKxDAYhuEgio6HhTcgBTe6qP45tGmWOp4VdDGCu5KmfzFDpxmTjoM7L8Fr9EqMjroQJIRsHj7CS8g2hQMKwA7HpjrgADJbIgMKSqYiF2KZDEBySBmnbI2shzAGAKU4WyVrXDAmMiUH5O6-s8_og26Tfu7eX9-mznZ9Ei96bXrrusQ1yQRrq3vnk-vLh2Ru-8dEaT06Okk-ybP-YrWbaNuFTbLS6Dbg1ve7QUZnp6PhRXpze345PLpJDc94llamqmkD2MgCQWmlUai8USYzjDOJAhByXphaClljlWGtOSsob1DoeJBvkL3F7NS7pxmGvpzYYLBtdYduFkqWiUJBkWdFpLt_6NjNfBc_F5XMc0aBQlT7C2W8C8FjU069nWj_UlIoPyuXsXL5VTnane_FWRXT_MqfrBEcLsDctvjy_1J5NTxeTH4A8UmGsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576621010</pqid></control><display><type>article</type><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</creator><creatorcontrib>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</creatorcontrib><description>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.30075</identifier><identifier>PMID: 34224597</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>9aaTAD ; activation domain ; Amino Acid Motifs ; Amino acids ; Basic Helix-Loop-Helix Transcription Factors - chemistry ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Binding ; Binding Sites ; CREB-Binding Protein - chemistry ; CREB-Binding Protein - metabolism ; Domains ; E2A ; Free energy ; Histone-Lysine N-Methyltransferase - chemistry ; Histone-Lysine N-Methyltransferase - metabolism ; Humans ; Hydrophobicity ; KIX ; MLL ; Myeloid-Lymphoid Leukemia Protein - chemistry ; Myeloid-Lymphoid Leukemia Protein - metabolism ; NF-kappa B - chemistry ; NF-kappa B - metabolism ; NMR ; Nuclear magnetic resonance ; p53 ; p53 Protein ; Protein Binding ; Protein Interaction Domains and Motifs ; Residues ; Solvents ; Transcription factors ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Journal of cellular biochemistry, 2021-10, Vol.122 (10), p.1544-1555</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</citedby><cites>FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</cites><orcidid>0000-0002-6283-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.30075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.30075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34224597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofrova, Alena</creatorcontrib><creatorcontrib>Lousa, Petr</creatorcontrib><creatorcontrib>Kubickova, Monika</creatorcontrib><creatorcontrib>Hritz, Jozef</creatorcontrib><creatorcontrib>Otasevic, Tomas</creatorcontrib><creatorcontrib>Repko, Martin</creatorcontrib><creatorcontrib>Knight, Andrea</creatorcontrib><creatorcontrib>Piskacek, Martin</creatorcontrib><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><title>Journal of cellular biochemistry</title><addtitle>J Cell Biochem</addtitle><description>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</description><subject>9aaTAD</subject><subject>activation domain</subject><subject>Amino Acid Motifs</subject><subject>Amino acids</subject><subject>Basic Helix-Loop-Helix Transcription Factors - chemistry</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>CREB-Binding Protein - chemistry</subject><subject>CREB-Binding Protein - metabolism</subject><subject>Domains</subject><subject>E2A</subject><subject>Free energy</subject><subject>Histone-Lysine N-Methyltransferase - chemistry</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Humans</subject><subject>Hydrophobicity</subject><subject>KIX</subject><subject>MLL</subject><subject>Myeloid-Lymphoid Leukemia Protein - chemistry</subject><subject>Myeloid-Lymphoid Leukemia Protein - metabolism</subject><subject>NF-kappa B - chemistry</subject><subject>NF-kappa B - metabolism</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>p53</subject><subject>p53 Protein</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Residues</subject><subject>Solvents</subject><subject>Transcription factors</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtKxDAYhuEgio6HhTcgBTe6qP45tGmWOp4VdDGCu5KmfzFDpxmTjoM7L8Fr9EqMjroQJIRsHj7CS8g2hQMKwA7HpjrgADJbIgMKSqYiF2KZDEBySBmnbI2shzAGAKU4WyVrXDAmMiUH5O6-s8_og26Tfu7eX9-mznZ9Ei96bXrrusQ1yQRrq3vnk-vLh2Ru-8dEaT06Okk-ybP-YrWbaNuFTbLS6Dbg1ve7QUZnp6PhRXpze345PLpJDc94llamqmkD2MgCQWmlUai8USYzjDOJAhByXphaClljlWGtOSsob1DoeJBvkL3F7NS7pxmGvpzYYLBtdYduFkqWiUJBkWdFpLt_6NjNfBc_F5XMc0aBQlT7C2W8C8FjU069nWj_UlIoPyuXsXL5VTnane_FWRXT_MqfrBEcLsDctvjy_1J5NTxeTH4A8UmGsw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Hofrova, Alena</creator><creator>Lousa, Petr</creator><creator>Kubickova, Monika</creator><creator>Hritz, Jozef</creator><creator>Otasevic, Tomas</creator><creator>Repko, Martin</creator><creator>Knight, Andrea</creator><creator>Piskacek, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6283-1542</orcidid></search><sort><creationdate>202110</creationdate><title>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</title><author>Hofrova, Alena ; Lousa, Petr ; Kubickova, Monika ; Hritz, Jozef ; Otasevic, Tomas ; Repko, Martin ; Knight, Andrea ; Piskacek, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-bcbd1f0ef78e09a9ae496f9c5c2327e40e0638cd747deb5eda32813fe4a4a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>9aaTAD</topic><topic>activation domain</topic><topic>Amino Acid Motifs</topic><topic>Amino acids</topic><topic>Basic Helix-Loop-Helix Transcription Factors - chemistry</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>CREB-Binding Protein - chemistry</topic><topic>CREB-Binding Protein - metabolism</topic><topic>Domains</topic><topic>E2A</topic><topic>Free energy</topic><topic>Histone-Lysine N-Methyltransferase - chemistry</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Humans</topic><topic>Hydrophobicity</topic><topic>KIX</topic><topic>MLL</topic><topic>Myeloid-Lymphoid Leukemia Protein - chemistry</topic><topic>Myeloid-Lymphoid Leukemia Protein - metabolism</topic><topic>NF-kappa B - chemistry</topic><topic>NF-kappa B - metabolism</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>p53</topic><topic>p53 Protein</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Residues</topic><topic>Solvents</topic><topic>Transcription factors</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofrova, Alena</creatorcontrib><creatorcontrib>Lousa, Petr</creatorcontrib><creatorcontrib>Kubickova, Monika</creatorcontrib><creatorcontrib>Hritz, Jozef</creatorcontrib><creatorcontrib>Otasevic, Tomas</creatorcontrib><creatorcontrib>Repko, Martin</creatorcontrib><creatorcontrib>Knight, Andrea</creatorcontrib><creatorcontrib>Piskacek, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofrova, Alena</au><au>Lousa, Petr</au><au>Kubickova, Monika</au><au>Hritz, Jozef</au><au>Otasevic, Tomas</au><au>Repko, Martin</au><au>Knight, Andrea</au><au>Piskacek, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal two‐point interaction of mediator KIX with 9aaTAD activation domains</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J Cell Biochem</addtitle><date>2021-10</date><risdate>2021</risdate><volume>122</volume><issue>10</issue><spage>1544</spage><epage>1555</epage><pages>1544-1555</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>The nine‐amino‐acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3‐4 and p6‐7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF‐kB, and p53. In this study, we analyzed the 9aaTADs‐KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1–α2–α3 are influenced by sterically‐associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX‐L12‐G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1–α2–α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX‐L12‐G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX‐L12‐G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co‐operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α‐helixes and enables the enhanced formation of the KIX‐L12‐G2 region. This contributes to free energy and is the key for the KIX‐9aaTAD binding. Therefore, the 9aaTAD‐KIX interactions do not operate under the rigid key‐and‐lock mechanism what explains the 9aaTAD natural variability.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34224597</pmid><doi>10.1002/jcb.30075</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6283-1542</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2021-10, Vol.122 (10), p.1544-1555 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_2548908658 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 9aaTAD activation domain Amino Acid Motifs Amino acids Basic Helix-Loop-Helix Transcription Factors - chemistry Basic Helix-Loop-Helix Transcription Factors - metabolism Binding Binding Sites CREB-Binding Protein - chemistry CREB-Binding Protein - metabolism Domains E2A Free energy Histone-Lysine N-Methyltransferase - chemistry Histone-Lysine N-Methyltransferase - metabolism Humans Hydrophobicity KIX MLL Myeloid-Lymphoid Leukemia Protein - chemistry Myeloid-Lymphoid Leukemia Protein - metabolism NF-kappa B - chemistry NF-kappa B - metabolism NMR Nuclear magnetic resonance p53 p53 Protein Protein Binding Protein Interaction Domains and Motifs Residues Solvents Transcription factors Transcription Factors - chemistry Transcription Factors - metabolism Tumor Suppressor Protein p53 - chemistry Tumor Suppressor Protein p53 - metabolism |
title | Universal two‐point interaction of mediator KIX with 9aaTAD activation domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20two%E2%80%90point%20interaction%20of%20mediator%20KIX%20with%209aaTAD%20activation%20domains&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Hofrova,%20Alena&rft.date=2021-10&rft.volume=122&rft.issue=10&rft.spage=1544&rft.epage=1555&rft.pages=1544-1555&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.30075&rft_dat=%3Cproquest_cross%3E2548908658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576621010&rft_id=info:pmid/34224597&rfr_iscdi=true |