Visual Localisation for Knee Arthroscopy

Purpose  Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods  The approach combines image information, deep learning techniques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2021-12, Vol.16 (12), p.2137-2145
Hauptverfasser: Banach, Artur, Strydom, Mario, Jaiprakash, Anjali, Carneiro, Gustavo, Eriksson, Anders, Crawford, Ross, McFadyen, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2145
container_issue 12
container_start_page 2137
container_title International journal for computer assisted radiology and surgery
container_volume 16
creator Banach, Artur
Strydom, Mario
Jaiprakash, Anjali
Carneiro, Gustavo
Eriksson, Anders
Crawford, Ross
McFadyen, Aaron
description Purpose  Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods  The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint. Results  Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85 ∘ and 9.94mm/1.13 ∘ achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation. Conclusion  The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.
doi_str_mv 10.1007/s11548-021-02444-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548626311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548626311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gisXQJ-GzHdsaq4ktUYgFWy03OkCqNg50M_fcYgkBiQLrT3fC89_EScg70EihVVxGgEDqnDFIKIXJ9QGagJeRSsPLwpwd6TE5i3FIqCsWLGVm8NHG0bbb2lW2baIfGd5nzIXvoELNlGN6Cj5Xv96fkyNk24tl3nZPnm-un1V2-fry9Xy3XecULNuQlUqEkKKlECTqFczatBqdQcScrlPWGFrrmZQkopMZaC-pUmY5BuwHF52Qxze2Dfx8xDmbXxArb1nbox2hY-lMyyQESevEH3foxdOk6wyRlUhWCy0SxiarSJzGgM31odjbsDVDzaZ6ZzDPJPPNlntFJxCdRTHD3iuF39D-qD6OMbwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602675436</pqid></control><display><type>article</type><title>Visual Localisation for Knee Arthroscopy</title><source>Springer Nature - Complete Springer Journals</source><creator>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</creator><creatorcontrib>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</creatorcontrib><description>Purpose  Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods  The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint. Results  Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85 ∘ and 9.94mm/1.13 ∘ achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation. Conclusion  The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-021-02444-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bone surgery ; Cameras ; Computer Imaging ; Computer Science ; Deep learning ; Errors ; Health Informatics ; Image acquisition ; Imaging ; Joints (anatomy) ; Knee ; Localization ; Localization method ; Medicine ; Medicine &amp; Public Health ; Original Article ; Orthopedics ; Pattern Recognition and Graphics ; Radiology ; Surgery ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2021-12, Vol.16 (12), p.2137-2145</ispartof><rights>CARS 2021</rights><rights>CARS 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</citedby><cites>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</cites><orcidid>0000-0003-2622-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-021-02444-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-021-02444-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Banach, Artur</creatorcontrib><creatorcontrib>Strydom, Mario</creatorcontrib><creatorcontrib>Jaiprakash, Anjali</creatorcontrib><creatorcontrib>Carneiro, Gustavo</creatorcontrib><creatorcontrib>Eriksson, Anders</creatorcontrib><creatorcontrib>Crawford, Ross</creatorcontrib><creatorcontrib>McFadyen, Aaron</creatorcontrib><title>Visual Localisation for Knee Arthroscopy</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><description>Purpose  Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods  The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint. Results  Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85 ∘ and 9.94mm/1.13 ∘ achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation. Conclusion  The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</description><subject>Bone surgery</subject><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Health Informatics</subject><subject>Image acquisition</subject><subject>Imaging</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>Localization</subject><subject>Localization method</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Surgery</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gisXQJ-GzHdsaq4ktUYgFWy03OkCqNg50M_fcYgkBiQLrT3fC89_EScg70EihVVxGgEDqnDFIKIXJ9QGagJeRSsPLwpwd6TE5i3FIqCsWLGVm8NHG0bbb2lW2baIfGd5nzIXvoELNlGN6Cj5Xv96fkyNk24tl3nZPnm-un1V2-fry9Xy3XecULNuQlUqEkKKlECTqFczatBqdQcScrlPWGFrrmZQkopMZaC-pUmY5BuwHF52Qxze2Dfx8xDmbXxArb1nbox2hY-lMyyQESevEH3foxdOk6wyRlUhWCy0SxiarSJzGgM31odjbsDVDzaZ6ZzDPJPPNlntFJxCdRTHD3iuF39D-qD6OMbwQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Banach, Artur</creator><creator>Strydom, Mario</creator><creator>Jaiprakash, Anjali</creator><creator>Carneiro, Gustavo</creator><creator>Eriksson, Anders</creator><creator>Crawford, Ross</creator><creator>McFadyen, Aaron</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2622-3301</orcidid></search><sort><creationdate>20211201</creationdate><title>Visual Localisation for Knee Arthroscopy</title><author>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bone surgery</topic><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Health Informatics</topic><topic>Image acquisition</topic><topic>Imaging</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>Localization</topic><topic>Localization method</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Surgery</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banach, Artur</creatorcontrib><creatorcontrib>Strydom, Mario</creatorcontrib><creatorcontrib>Jaiprakash, Anjali</creatorcontrib><creatorcontrib>Carneiro, Gustavo</creatorcontrib><creatorcontrib>Eriksson, Anders</creatorcontrib><creatorcontrib>Crawford, Ross</creatorcontrib><creatorcontrib>McFadyen, Aaron</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banach, Artur</au><au>Strydom, Mario</au><au>Jaiprakash, Anjali</au><au>Carneiro, Gustavo</au><au>Eriksson, Anders</au><au>Crawford, Ross</au><au>McFadyen, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Localisation for Knee Arthroscopy</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>2137</spage><epage>2145</epage><pages>2137-2145</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose  Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods  The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint. Results  Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85 ∘ and 9.94mm/1.13 ∘ achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation. Conclusion  The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11548-021-02444-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2622-3301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2021-12, Vol.16 (12), p.2137-2145
issn 1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_2548626311
source Springer Nature - Complete Springer Journals
subjects Bone surgery
Cameras
Computer Imaging
Computer Science
Deep learning
Errors
Health Informatics
Image acquisition
Imaging
Joints (anatomy)
Knee
Localization
Localization method
Medicine
Medicine & Public Health
Original Article
Orthopedics
Pattern Recognition and Graphics
Radiology
Surgery
Vision
title Visual Localisation for Knee Arthroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Localisation%20for%20Knee%20Arthroscopy&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Banach,%20Artur&rft.date=2021-12-01&rft.volume=16&rft.issue=12&rft.spage=2137&rft.epage=2145&rft.pages=2137-2145&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-021-02444-8&rft_dat=%3Cproquest_cross%3E2548626311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602675436&rft_id=info:pmid/&rfr_iscdi=true