Visual Localisation for Knee Arthroscopy
Purpose Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery. Methods The approach combines image information, deep learning techniques...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2021-12, Vol.16 (12), p.2137-2145 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2145 |
---|---|
container_issue | 12 |
container_start_page | 2137 |
container_title | International journal for computer assisted radiology and surgery |
container_volume | 16 |
creator | Banach, Artur Strydom, Mario Jaiprakash, Anjali Carneiro, Gustavo Eriksson, Anders Crawford, Ross McFadyen, Aaron |
description | Purpose
Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery.
Methods
The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint.
Results
Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85
∘
and 9.94mm/1.13
∘
achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation.
Conclusion
The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery. |
doi_str_mv | 10.1007/s11548-021-02444-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548626311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548626311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gisXQJ-GzHdsaq4ktUYgFWy03OkCqNg50M_fcYgkBiQLrT3fC89_EScg70EihVVxGgEDqnDFIKIXJ9QGagJeRSsPLwpwd6TE5i3FIqCsWLGVm8NHG0bbb2lW2baIfGd5nzIXvoELNlGN6Cj5Xv96fkyNk24tl3nZPnm-un1V2-fry9Xy3XecULNuQlUqEkKKlECTqFczatBqdQcScrlPWGFrrmZQkopMZaC-pUmY5BuwHF52Qxze2Dfx8xDmbXxArb1nbox2hY-lMyyQESevEH3foxdOk6wyRlUhWCy0SxiarSJzGgM31odjbsDVDzaZ6ZzDPJPPNlntFJxCdRTHD3iuF39D-qD6OMbwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602675436</pqid></control><display><type>article</type><title>Visual Localisation for Knee Arthroscopy</title><source>Springer Nature - Complete Springer Journals</source><creator>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</creator><creatorcontrib>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</creatorcontrib><description>Purpose
Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery.
Methods
The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint.
Results
Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85
∘
and 9.94mm/1.13
∘
achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation.
Conclusion
The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-021-02444-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bone surgery ; Cameras ; Computer Imaging ; Computer Science ; Deep learning ; Errors ; Health Informatics ; Image acquisition ; Imaging ; Joints (anatomy) ; Knee ; Localization ; Localization method ; Medicine ; Medicine & Public Health ; Original Article ; Orthopedics ; Pattern Recognition and Graphics ; Radiology ; Surgery ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2021-12, Vol.16 (12), p.2137-2145</ispartof><rights>CARS 2021</rights><rights>CARS 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</citedby><cites>FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</cites><orcidid>0000-0003-2622-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-021-02444-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-021-02444-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Banach, Artur</creatorcontrib><creatorcontrib>Strydom, Mario</creatorcontrib><creatorcontrib>Jaiprakash, Anjali</creatorcontrib><creatorcontrib>Carneiro, Gustavo</creatorcontrib><creatorcontrib>Eriksson, Anders</creatorcontrib><creatorcontrib>Crawford, Ross</creatorcontrib><creatorcontrib>McFadyen, Aaron</creatorcontrib><title>Visual Localisation for Knee Arthroscopy</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><description>Purpose
Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery.
Methods
The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint.
Results
Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85
∘
and 9.94mm/1.13
∘
achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation.
Conclusion
The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</description><subject>Bone surgery</subject><subject>Cameras</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Health Informatics</subject><subject>Image acquisition</subject><subject>Imaging</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>Localization</subject><subject>Localization method</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Surgery</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gisXQJ-GzHdsaq4ktUYgFWy03OkCqNg50M_fcYgkBiQLrT3fC89_EScg70EihVVxGgEDqnDFIKIXJ9QGagJeRSsPLwpwd6TE5i3FIqCsWLGVm8NHG0bbb2lW2baIfGd5nzIXvoELNlGN6Cj5Xv96fkyNk24tl3nZPnm-un1V2-fry9Xy3XecULNuQlUqEkKKlECTqFczatBqdQcScrlPWGFrrmZQkopMZaC-pUmY5BuwHF52Qxze2Dfx8xDmbXxArb1nbox2hY-lMyyQESevEH3foxdOk6wyRlUhWCy0SxiarSJzGgM31odjbsDVDzaZ6ZzDPJPPNlntFJxCdRTHD3iuF39D-qD6OMbwQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Banach, Artur</creator><creator>Strydom, Mario</creator><creator>Jaiprakash, Anjali</creator><creator>Carneiro, Gustavo</creator><creator>Eriksson, Anders</creator><creator>Crawford, Ross</creator><creator>McFadyen, Aaron</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2622-3301</orcidid></search><sort><creationdate>20211201</creationdate><title>Visual Localisation for Knee Arthroscopy</title><author>Banach, Artur ; Strydom, Mario ; Jaiprakash, Anjali ; Carneiro, Gustavo ; Eriksson, Anders ; Crawford, Ross ; McFadyen, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-9e047617674918918ffa8611f7e73f6ce6db058d3991e468ed840f79735eab173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bone surgery</topic><topic>Cameras</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Health Informatics</topic><topic>Image acquisition</topic><topic>Imaging</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>Localization</topic><topic>Localization method</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Surgery</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banach, Artur</creatorcontrib><creatorcontrib>Strydom, Mario</creatorcontrib><creatorcontrib>Jaiprakash, Anjali</creatorcontrib><creatorcontrib>Carneiro, Gustavo</creatorcontrib><creatorcontrib>Eriksson, Anders</creatorcontrib><creatorcontrib>Crawford, Ross</creatorcontrib><creatorcontrib>McFadyen, Aaron</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banach, Artur</au><au>Strydom, Mario</au><au>Jaiprakash, Anjali</au><au>Carneiro, Gustavo</au><au>Eriksson, Anders</au><au>Crawford, Ross</au><au>McFadyen, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Localisation for Knee Arthroscopy</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>2137</spage><epage>2145</epage><pages>2137-2145</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose
Navigation in visually complex endoscopic environments requires an accurate and robust localisation system. This paper presents the single image deep learning based camera localisation method for orthopedic surgery.
Methods
The approach combines image information, deep learning techniques and bone-tracking data to estimate camera poses relative to the bone-markers. We have collected one arthroscopic video sequence for four knee flexion angles, per synthetic phantom knee model and a cadaveric knee-joint.
Results
Experimental results are shown for both a synthetic knee model and a cadaveric knee-joint with mean localisation errors of 9.66mm/0.85
∘
and 9.94mm/1.13
∘
achieved respectively. We have found no correlation between localisation errors achieved on synthetic and cadaveric images, and hence we predict that arthroscopic image artifacts play a minor role in camera pose estimation compared to constraints introduced by the presented setup. We have discovered that the images acquired for 90°and 0°knee flexion angles are respectively most and least informative for visual localisation.
Conclusion
The performed study shows deep learning performs well in visually challenging, feature-poor, knee arthroscopy environments, which suggests such techniques can bring further improvements to localisation in Minimally Invasive Surgery.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11548-021-02444-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2622-3301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-6410 |
ispartof | International journal for computer assisted radiology and surgery, 2021-12, Vol.16 (12), p.2137-2145 |
issn | 1861-6410 1861-6429 |
language | eng |
recordid | cdi_proquest_miscellaneous_2548626311 |
source | Springer Nature - Complete Springer Journals |
subjects | Bone surgery Cameras Computer Imaging Computer Science Deep learning Errors Health Informatics Image acquisition Imaging Joints (anatomy) Knee Localization Localization method Medicine Medicine & Public Health Original Article Orthopedics Pattern Recognition and Graphics Radiology Surgery Vision |
title | Visual Localisation for Knee Arthroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Localisation%20for%20Knee%20Arthroscopy&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Banach,%20Artur&rft.date=2021-12-01&rft.volume=16&rft.issue=12&rft.spage=2137&rft.epage=2145&rft.pages=2137-2145&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-021-02444-8&rft_dat=%3Cproquest_cross%3E2548626311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602675436&rft_id=info:pmid/&rfr_iscdi=true |