Classification of biscuit tiles for defect detection using Fourier transform features

Automated defect detection is difficult to achieve in ceramic tile manufacturing today. Computer vision and machine learning based approaches are commonly utilised for this purpose. This paper considers the problem of defect detection in the textured ceramic tiles quality analysis. Instead of detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2022-06, Vol.125, p.400-414
Hauptverfasser: Zorić, Bruno, Matić, Tomislav, Hocenski, Željko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 400
container_title ISA transactions
container_volume 125
creator Zorić, Bruno
Matić, Tomislav
Hocenski, Željko
description Automated defect detection is difficult to achieve in ceramic tile manufacturing today. Computer vision and machine learning based approaches are commonly utilised for this purpose. This paper considers the problem of defect detection in the textured ceramic tiles quality analysis. Instead of detecting defects on the finished tile, the biscuit tile is considered, a pressed, dried, decorated tile before its firing in the kiln. As it is an intermediary product during tile production, classifying them as defected or not before the firing can significantly reduce energy and material costs. To this end, in this paper we propose a new Fourier spectrum annuli feature extraction method. It is based on Fourier spectrum of the surface biscuit tile image and tested on real tile examples from the ceramic tile industry. According to the observed results, it outperforms several well-known methods for feature extraction on real-world tile datasets reaching an F1 score of 0.9236 and 0.8866 on the Black Random Stripes and Stripes Brown Light tile designs respectively. •Biscuit tiles an intermediate product in ceramic tile production.•Detecting defects at biscuit tile stage greatly reduces production costs.•Feature extraction based on the Fourier transform power spectrum improves detection.•Classification performance consistent across classifiers and tile designs.
doi_str_mv 10.1016/j.isatra.2021.06.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548598568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057821003414</els_id><sourcerecordid>2548598568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-65ee5e8bc3c987dce37654c28fd8558d177a80d667d68d3a083ad068283c972a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbmZMMs1jNoIUX1BwY9chTW4kZTqpSUbw35syrl0duJxz7z0fQreUtJRQcb9vQzYlmZYRRlsiWsL4GVpQJfumjtg5WhBC-4ZwqS7RVc57QqqlVwu0XQ8m5-CDNSXEEUePdyHbKRRcwgAZ-5iwAw-2VClVTq4ph_ETP8cpBUi4Xh5z9R2wB1OmBPkaXXgzZLj50yXaPj99rF-bzfvL2_px01gm-tIIDsBB7WxneyWdhU4KvrJMeac4V45KaRRxQkgnlOsMUZ1xRCimakAy0y3R3bz3mOLXBLnoQ30ehsGMEKesGV-pWpMLVa2r2WpTzDmB18cUDib9aEr0iaLe65miPlHUROiKqMYe5hjUGt-1rc42wGjBhVRhaBfD_wt-AVeefik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548598568</pqid></control><display><type>article</type><title>Classification of biscuit tiles for defect detection using Fourier transform features</title><source>Elsevier ScienceDirect Journals</source><creator>Zorić, Bruno ; Matić, Tomislav ; Hocenski, Željko</creator><creatorcontrib>Zorić, Bruno ; Matić, Tomislav ; Hocenski, Željko</creatorcontrib><description>Automated defect detection is difficult to achieve in ceramic tile manufacturing today. Computer vision and machine learning based approaches are commonly utilised for this purpose. This paper considers the problem of defect detection in the textured ceramic tiles quality analysis. Instead of detecting defects on the finished tile, the biscuit tile is considered, a pressed, dried, decorated tile before its firing in the kiln. As it is an intermediary product during tile production, classifying them as defected or not before the firing can significantly reduce energy and material costs. To this end, in this paper we propose a new Fourier spectrum annuli feature extraction method. It is based on Fourier spectrum of the surface biscuit tile image and tested on real tile examples from the ceramic tile industry. According to the observed results, it outperforms several well-known methods for feature extraction on real-world tile datasets reaching an F1 score of 0.9236 and 0.8866 on the Black Random Stripes and Stripes Brown Light tile designs respectively. •Biscuit tiles an intermediate product in ceramic tile production.•Detecting defects at biscuit tile stage greatly reduces production costs.•Feature extraction based on the Fourier transform power spectrum improves detection.•Classification performance consistent across classifiers and tile designs.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2021.06.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biscuit tile ; Ceramic tile ; Defect detection ; Feature extraction ; Fourier transform</subject><ispartof>ISA transactions, 2022-06, Vol.125, p.400-414</ispartof><rights>2021 ISA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-65ee5e8bc3c987dce37654c28fd8558d177a80d667d68d3a083ad068283c972a3</citedby><cites>FETCH-LOGICAL-c269t-65ee5e8bc3c987dce37654c28fd8558d177a80d667d68d3a083ad068283c972a3</cites><orcidid>0000-0002-8095-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2021.06.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zorić, Bruno</creatorcontrib><creatorcontrib>Matić, Tomislav</creatorcontrib><creatorcontrib>Hocenski, Željko</creatorcontrib><title>Classification of biscuit tiles for defect detection using Fourier transform features</title><title>ISA transactions</title><description>Automated defect detection is difficult to achieve in ceramic tile manufacturing today. Computer vision and machine learning based approaches are commonly utilised for this purpose. This paper considers the problem of defect detection in the textured ceramic tiles quality analysis. Instead of detecting defects on the finished tile, the biscuit tile is considered, a pressed, dried, decorated tile before its firing in the kiln. As it is an intermediary product during tile production, classifying them as defected or not before the firing can significantly reduce energy and material costs. To this end, in this paper we propose a new Fourier spectrum annuli feature extraction method. It is based on Fourier spectrum of the surface biscuit tile image and tested on real tile examples from the ceramic tile industry. According to the observed results, it outperforms several well-known methods for feature extraction on real-world tile datasets reaching an F1 score of 0.9236 and 0.8866 on the Black Random Stripes and Stripes Brown Light tile designs respectively. •Biscuit tiles an intermediate product in ceramic tile production.•Detecting defects at biscuit tile stage greatly reduces production costs.•Feature extraction based on the Fourier transform power spectrum improves detection.•Classification performance consistent across classifiers and tile designs.</description><subject>Biscuit tile</subject><subject>Ceramic tile</subject><subject>Defect detection</subject><subject>Feature extraction</subject><subject>Fourier transform</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbmZMMs1jNoIUX1BwY9chTW4kZTqpSUbw35syrl0duJxz7z0fQreUtJRQcb9vQzYlmZYRRlsiWsL4GVpQJfumjtg5WhBC-4ZwqS7RVc57QqqlVwu0XQ8m5-CDNSXEEUePdyHbKRRcwgAZ-5iwAw-2VClVTq4ph_ETP8cpBUi4Xh5z9R2wB1OmBPkaXXgzZLj50yXaPj99rF-bzfvL2_px01gm-tIIDsBB7WxneyWdhU4KvrJMeac4V45KaRRxQkgnlOsMUZ1xRCimakAy0y3R3bz3mOLXBLnoQ30ehsGMEKesGV-pWpMLVa2r2WpTzDmB18cUDib9aEr0iaLe65miPlHUROiKqMYe5hjUGt-1rc42wGjBhVRhaBfD_wt-AVeefik</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zorić, Bruno</creator><creator>Matić, Tomislav</creator><creator>Hocenski, Željko</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8095-3690</orcidid></search><sort><creationdate>202206</creationdate><title>Classification of biscuit tiles for defect detection using Fourier transform features</title><author>Zorić, Bruno ; Matić, Tomislav ; Hocenski, Željko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-65ee5e8bc3c987dce37654c28fd8558d177a80d667d68d3a083ad068283c972a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biscuit tile</topic><topic>Ceramic tile</topic><topic>Defect detection</topic><topic>Feature extraction</topic><topic>Fourier transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zorić, Bruno</creatorcontrib><creatorcontrib>Matić, Tomislav</creatorcontrib><creatorcontrib>Hocenski, Željko</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zorić, Bruno</au><au>Matić, Tomislav</au><au>Hocenski, Željko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of biscuit tiles for defect detection using Fourier transform features</atitle><jtitle>ISA transactions</jtitle><date>2022-06</date><risdate>2022</risdate><volume>125</volume><spage>400</spage><epage>414</epage><pages>400-414</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Automated defect detection is difficult to achieve in ceramic tile manufacturing today. Computer vision and machine learning based approaches are commonly utilised for this purpose. This paper considers the problem of defect detection in the textured ceramic tiles quality analysis. Instead of detecting defects on the finished tile, the biscuit tile is considered, a pressed, dried, decorated tile before its firing in the kiln. As it is an intermediary product during tile production, classifying them as defected or not before the firing can significantly reduce energy and material costs. To this end, in this paper we propose a new Fourier spectrum annuli feature extraction method. It is based on Fourier spectrum of the surface biscuit tile image and tested on real tile examples from the ceramic tile industry. According to the observed results, it outperforms several well-known methods for feature extraction on real-world tile datasets reaching an F1 score of 0.9236 and 0.8866 on the Black Random Stripes and Stripes Brown Light tile designs respectively. •Biscuit tiles an intermediate product in ceramic tile production.•Detecting defects at biscuit tile stage greatly reduces production costs.•Feature extraction based on the Fourier transform power spectrum improves detection.•Classification performance consistent across classifiers and tile designs.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.isatra.2021.06.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8095-3690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2022-06, Vol.125, p.400-414
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2548598568
source Elsevier ScienceDirect Journals
subjects Biscuit tile
Ceramic tile
Defect detection
Feature extraction
Fourier transform
title Classification of biscuit tiles for defect detection using Fourier transform features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20biscuit%20tiles%20for%20defect%20detection%20using%20Fourier%20transform%20features&rft.jtitle=ISA%20transactions&rft.au=Zori%C4%87,%20Bruno&rft.date=2022-06&rft.volume=125&rft.spage=400&rft.epage=414&rft.pages=400-414&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2021.06.025&rft_dat=%3Cproquest_cross%3E2548598568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548598568&rft_id=info:pmid/&rft_els_id=S0019057821003414&rfr_iscdi=true