Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design

Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short life...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2021-08, Vol.42 (16), p.e2100279-n/a
Hauptverfasser: Kwon, Da‐Sol, Kim, Hee Joong, Shim, Jimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2100279
container_title Macromolecular rapid communications.
container_volume 42
creator Kwon, Da‐Sol
Kim, Hee Joong
Shim, Jimin
description Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state‐of‐the‐art overview of contemporary dendrite‐suppressing polymer materials from the electro‐chemo‐mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro‐chemo‐mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite‐suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite‐free, and long‐lasting metal battery systems. Rational design strategies to achieve dendrite‐suppressing polymer materials for metal battery applications are reviewed from the electro‐chemo‐mechanical viewpoint of macromolecular design. Judiciously tailoring various properties of polymer materials can provide virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving the problematic dendrite issues.
doi_str_mv 10.1002/marc.202100279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548418030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548418030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-4492bbcb36cc3132dd16d00b07253d022f38a0b6541f05f51a13d1b77f9b804f3</originalsourceid><addsrcrecordid>eNqFkctq3DAUhk1pIGnabdaCbrrx5Ejytbvp5FbIkJC03RpZPppRkC1Xkgmz6yPkHfJmeZLKTGmhm6zOOfD95_YnyQmFBQVgp71wcsGAzUVZv0mOaM5oymtWvo05MJZSzovD5J33DwBQZcCOkuczHDqnA778erqfxtGh93rYkFtrdj06shYBnRbGE2UduRcKyR3KrXAbFK1BssYgDPkiQsR2ZDmORksRtB38Z3LhbE_CFsm5QRmcjSNWW-znuJ57DBE15IfGx9HqIRCr4jgZRTbykxGOnKHXm-F9cqDiBvjhTzxOvl-cf1tdpdc3l19Xy-tU8hzqNMtq1ray5YWUnHLWdbToAFooWc67eL_ilYC2yDOqIFc5FZR3tC1LVbcVZIofJ5_2fUdnf07oQ9NrL9EYMaCdfMPyrMpoBRwi-vE_9MFObojbRapg8be8opFa7Kl4lPcOVTM6HW3aNRSa2aZm9qz561kU1HvBoza4e4Vu1su71T_tb2FRn-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562840381</pqid></control><display><type>article</type><title>Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kwon, Da‐Sol ; Kim, Hee Joong ; Shim, Jimin</creator><creatorcontrib>Kwon, Da‐Sol ; Kim, Hee Joong ; Shim, Jimin</creatorcontrib><description>Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state‐of‐the‐art overview of contemporary dendrite‐suppressing polymer materials from the electro‐chemo‐mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro‐chemo‐mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite‐suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite‐free, and long‐lasting metal battery systems. Rational design strategies to achieve dendrite‐suppressing polymer materials for metal battery applications are reviewed from the electro‐chemo‐mechanical viewpoint of macromolecular design. Judiciously tailoring various properties of polymer materials can provide virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving the problematic dendrite issues.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202100279</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Dendrites ; Design ; Electrolytes ; Ion flux ; Life span ; Macromolecules ; Mechanical properties ; metal batteries ; Metal ions ; Metals ; next‐generation batteries ; polymer materials ; Polymers ; Rechargeable batteries ; Separators</subject><ispartof>Macromolecular rapid communications., 2021-08, Vol.42 (16), p.e2100279-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-4492bbcb36cc3132dd16d00b07253d022f38a0b6541f05f51a13d1b77f9b804f3</citedby><cites>FETCH-LOGICAL-c3509-4492bbcb36cc3132dd16d00b07253d022f38a0b6541f05f51a13d1b77f9b804f3</cites><orcidid>0000-0001-6147-921X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.202100279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.202100279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Kwon, Da‐Sol</creatorcontrib><creatorcontrib>Kim, Hee Joong</creatorcontrib><creatorcontrib>Shim, Jimin</creatorcontrib><title>Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design</title><title>Macromolecular rapid communications.</title><description>Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state‐of‐the‐art overview of contemporary dendrite‐suppressing polymer materials from the electro‐chemo‐mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro‐chemo‐mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite‐suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite‐free, and long‐lasting metal battery systems. Rational design strategies to achieve dendrite‐suppressing polymer materials for metal battery applications are reviewed from the electro‐chemo‐mechanical viewpoint of macromolecular design. Judiciously tailoring various properties of polymer materials can provide virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving the problematic dendrite issues.</description><subject>Batteries</subject><subject>Dendrites</subject><subject>Design</subject><subject>Electrolytes</subject><subject>Ion flux</subject><subject>Life span</subject><subject>Macromolecules</subject><subject>Mechanical properties</subject><subject>metal batteries</subject><subject>Metal ions</subject><subject>Metals</subject><subject>next‐generation batteries</subject><subject>polymer materials</subject><subject>Polymers</subject><subject>Rechargeable batteries</subject><subject>Separators</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctq3DAUhk1pIGnabdaCbrrx5Ejytbvp5FbIkJC03RpZPppRkC1Xkgmz6yPkHfJmeZLKTGmhm6zOOfD95_YnyQmFBQVgp71wcsGAzUVZv0mOaM5oymtWvo05MJZSzovD5J33DwBQZcCOkuczHDqnA778erqfxtGh93rYkFtrdj06shYBnRbGE2UduRcKyR3KrXAbFK1BssYgDPkiQsR2ZDmORksRtB38Z3LhbE_CFsm5QRmcjSNWW-znuJ57DBE15IfGx9HqIRCr4jgZRTbykxGOnKHXm-F9cqDiBvjhTzxOvl-cf1tdpdc3l19Xy-tU8hzqNMtq1ray5YWUnHLWdbToAFooWc67eL_ilYC2yDOqIFc5FZR3tC1LVbcVZIofJ5_2fUdnf07oQ9NrL9EYMaCdfMPyrMpoBRwi-vE_9MFObojbRapg8be8opFa7Kl4lPcOVTM6HW3aNRSa2aZm9qz561kU1HvBoza4e4Vu1su71T_tb2FRn-Y</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Kwon, Da‐Sol</creator><creator>Kim, Hee Joong</creator><creator>Shim, Jimin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6147-921X</orcidid></search><sort><creationdate>202108</creationdate><title>Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design</title><author>Kwon, Da‐Sol ; Kim, Hee Joong ; Shim, Jimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-4492bbcb36cc3132dd16d00b07253d022f38a0b6541f05f51a13d1b77f9b804f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Dendrites</topic><topic>Design</topic><topic>Electrolytes</topic><topic>Ion flux</topic><topic>Life span</topic><topic>Macromolecules</topic><topic>Mechanical properties</topic><topic>metal batteries</topic><topic>Metal ions</topic><topic>Metals</topic><topic>next‐generation batteries</topic><topic>polymer materials</topic><topic>Polymers</topic><topic>Rechargeable batteries</topic><topic>Separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Da‐Sol</creatorcontrib><creatorcontrib>Kim, Hee Joong</creatorcontrib><creatorcontrib>Shim, Jimin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Da‐Sol</au><au>Kim, Hee Joong</au><au>Shim, Jimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design</atitle><jtitle>Macromolecular rapid communications.</jtitle><date>2021-08</date><risdate>2021</risdate><volume>42</volume><issue>16</issue><spage>e2100279</spage><epage>n/a</epage><pages>e2100279-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Metal batteries have been emerging as next‐generation battery systems by virtue of ultrahigh theoretical specific capacities and low reduction potentials of metallic anodes. However, significant concerns regarding the uncontrolled metallic dendrite growth accompanied by safety hazards and short lifespan have impeded practical applications of metal batteries. Although a great deal of effort has been pursued to highlight the thermodynamic origin of dendrite growth and a variety of experimental methodologies for dendrite suppression, the roles of polymer materials in suppressing the dendrite growth have been underestimated. This review aims to give a state‐of‐the‐art overview of contemporary dendrite‐suppressing polymer materials from the electro‐chemo‐mechanical viewpoint of macromolecular design, including i) homogeneous distribution of metal ion flux, ii) mechanical blocking of metal dendrites, iii) tailoring polymer structures, and iv) modulating the physical configuration of polymer membranes. Judiciously tailoring electro‐chemo‐mechanical properties of polymer materials provides virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving problematic dendrite issues. Transforming these rational design strategies into building dendrite‐suppressing polymer materials and exploiting them towards polymer electrolytes, separators, and coating materials hold the key to realizing safe, dendrite‐free, and long‐lasting metal battery systems. Rational design strategies to achieve dendrite‐suppressing polymer materials for metal battery applications are reviewed from the electro‐chemo‐mechanical viewpoint of macromolecular design. Judiciously tailoring various properties of polymer materials can provide virtually unlimited opportunities to afford safe and high‐performance metal battery systems by resolving the problematic dendrite issues.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/marc.202100279</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6147-921X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2021-08, Vol.42 (16), p.e2100279-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2548418030
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Dendrites
Design
Electrolytes
Ion flux
Life span
Macromolecules
Mechanical properties
metal batteries
Metal ions
Metals
next‐generation batteries
polymer materials
Polymers
Rechargeable batteries
Separators
title Dendrite‐Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electro‐Chemo‐Mechanical Viewpoint of Macromolecular Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite%E2%80%90Suppressing%20Polymer%20Materials%20for%20Safe%20Rechargeable%20Metal%20Battery%20Applications:%20From%20the%20Electro%E2%80%90Chemo%E2%80%90Mechanical%20Viewpoint%20of%20Macromolecular%20Design&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Kwon,%20Da%E2%80%90Sol&rft.date=2021-08&rft.volume=42&rft.issue=16&rft.spage=e2100279&rft.epage=n/a&rft.pages=e2100279-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202100279&rft_dat=%3Cproquest_cross%3E2548418030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562840381&rft_id=info:pmid/&rfr_iscdi=true