Distributed learning for sketched kernel regression
We study distributed learning for regularized least squares regression in a reproducing kernel Hilbert space (RKHS). The divide-and-conquer strategy is a frequently used approach for dealing with very large data sets, which computes an estimate on each subset and then takes an average of the estimat...
Gespeichert in:
Veröffentlicht in: | Neural networks 2021-11, Vol.143, p.368-376 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 376 |
---|---|
container_issue | |
container_start_page | 368 |
container_title | Neural networks |
container_volume | 143 |
creator | Lian, Heng Liu, Jiamin Fan, Zengyan |
description | We study distributed learning for regularized least squares regression in a reproducing kernel Hilbert space (RKHS). The divide-and-conquer strategy is a frequently used approach for dealing with very large data sets, which computes an estimate on each subset and then takes an average of the estimators. Existing theoretical constraint on the number of subsets implies the size of each subset can still be large. Random sketching can thus be used to produce the local estimators on each subset to further reduce the computation compared to vanilla divide-and-conquer. In this setting, sketching and divide-and-conquer are complementary to each other in dealing with the large sample size. We show that optimal learning rates can be retained. Simulations are performed to compare sketched and non-standard divide-and-conquer methods. |
doi_str_mv | 10.1016/j.neunet.2021.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2548411819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608021002525</els_id><sourcerecordid>2548411819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-91a27d59f9274f193c9d17d2c80110fae13557443ce9f28a0be1c90c7448b7b23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-Axddumm9N-kj2QgyPmHAja5Dm96MmemkY9IK_ns71LWrC4d7PjgfY9cIGQKWt9vM0-hpyDhwzKDMgMMJW6CsVMoryU_ZAqQSaQkSztlFjFsAKGUuFkw8uDgE14wDtUlHdfDObxLbhyTuaDCfU7qj4KlLAm0Cxeh6f8nObN1Fuvq7S_bx9Pi-eknXb8-vq_t1aoRQQ6qw5lVbKKt4lVtUwqgWq5YbCYhga0JRFFWeC0PKcllDQ2gUmCmSTdVwsWQ3M_cQ-q-R4qD3LhrqutpTP0bNi1zmiHJCL1k-v5rQxxjI6kNw-zr8aAR9dKS3enakj440lHpyNNXu5hpNM74dBR2NI2-odYHMoNve_Q_4BV6ocQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548411819</pqid></control><display><type>article</type><title>Distributed learning for sketched kernel regression</title><source>Elsevier ScienceDirect Journals</source><creator>Lian, Heng ; Liu, Jiamin ; Fan, Zengyan</creator><creatorcontrib>Lian, Heng ; Liu, Jiamin ; Fan, Zengyan</creatorcontrib><description>We study distributed learning for regularized least squares regression in a reproducing kernel Hilbert space (RKHS). The divide-and-conquer strategy is a frequently used approach for dealing with very large data sets, which computes an estimate on each subset and then takes an average of the estimators. Existing theoretical constraint on the number of subsets implies the size of each subset can still be large. Random sketching can thus be used to produce the local estimators on each subset to further reduce the computation compared to vanilla divide-and-conquer. In this setting, sketching and divide-and-conquer are complementary to each other in dealing with the large sample size. We show that optimal learning rates can be retained. Simulations are performed to compare sketched and non-standard divide-and-conquer methods.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2021.06.020</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Distributed learning ; Kernel method ; Optimal rate ; Randomized sketches</subject><ispartof>Neural networks, 2021-11, Vol.143, p.368-376</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-91a27d59f9274f193c9d17d2c80110fae13557443ce9f28a0be1c90c7448b7b23</citedby><cites>FETCH-LOGICAL-c339t-91a27d59f9274f193c9d17d2c80110fae13557443ce9f28a0be1c90c7448b7b23</cites><orcidid>0000-0002-6008-6614 ; 0000-0002-3114-6120 ; 0000-0002-0951-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608021002525$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lian, Heng</creatorcontrib><creatorcontrib>Liu, Jiamin</creatorcontrib><creatorcontrib>Fan, Zengyan</creatorcontrib><title>Distributed learning for sketched kernel regression</title><title>Neural networks</title><description>We study distributed learning for regularized least squares regression in a reproducing kernel Hilbert space (RKHS). The divide-and-conquer strategy is a frequently used approach for dealing with very large data sets, which computes an estimate on each subset and then takes an average of the estimators. Existing theoretical constraint on the number of subsets implies the size of each subset can still be large. Random sketching can thus be used to produce the local estimators on each subset to further reduce the computation compared to vanilla divide-and-conquer. In this setting, sketching and divide-and-conquer are complementary to each other in dealing with the large sample size. We show that optimal learning rates can be retained. Simulations are performed to compare sketched and non-standard divide-and-conquer methods.</description><subject>Distributed learning</subject><subject>Kernel method</subject><subject>Optimal rate</subject><subject>Randomized sketches</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-Axddumm9N-kj2QgyPmHAja5Dm96MmemkY9IK_ns71LWrC4d7PjgfY9cIGQKWt9vM0-hpyDhwzKDMgMMJW6CsVMoryU_ZAqQSaQkSztlFjFsAKGUuFkw8uDgE14wDtUlHdfDObxLbhyTuaDCfU7qj4KlLAm0Cxeh6f8nObN1Fuvq7S_bx9Pi-eknXb8-vq_t1aoRQQ6qw5lVbKKt4lVtUwqgWq5YbCYhga0JRFFWeC0PKcllDQ2gUmCmSTdVwsWQ3M_cQ-q-R4qD3LhrqutpTP0bNi1zmiHJCL1k-v5rQxxjI6kNw-zr8aAR9dKS3enakj440lHpyNNXu5hpNM74dBR2NI2-odYHMoNve_Q_4BV6ocQM</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Lian, Heng</creator><creator>Liu, Jiamin</creator><creator>Fan, Zengyan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6008-6614</orcidid><orcidid>https://orcid.org/0000-0002-3114-6120</orcidid><orcidid>https://orcid.org/0000-0002-0951-0045</orcidid></search><sort><creationdate>202111</creationdate><title>Distributed learning for sketched kernel regression</title><author>Lian, Heng ; Liu, Jiamin ; Fan, Zengyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-91a27d59f9274f193c9d17d2c80110fae13557443ce9f28a0be1c90c7448b7b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distributed learning</topic><topic>Kernel method</topic><topic>Optimal rate</topic><topic>Randomized sketches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Heng</creatorcontrib><creatorcontrib>Liu, Jiamin</creatorcontrib><creatorcontrib>Fan, Zengyan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Heng</au><au>Liu, Jiamin</au><au>Fan, Zengyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed learning for sketched kernel regression</atitle><jtitle>Neural networks</jtitle><date>2021-11</date><risdate>2021</risdate><volume>143</volume><spage>368</spage><epage>376</epage><pages>368-376</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We study distributed learning for regularized least squares regression in a reproducing kernel Hilbert space (RKHS). The divide-and-conquer strategy is a frequently used approach for dealing with very large data sets, which computes an estimate on each subset and then takes an average of the estimators. Existing theoretical constraint on the number of subsets implies the size of each subset can still be large. Random sketching can thus be used to produce the local estimators on each subset to further reduce the computation compared to vanilla divide-and-conquer. In this setting, sketching and divide-and-conquer are complementary to each other in dealing with the large sample size. We show that optimal learning rates can be retained. Simulations are performed to compare sketched and non-standard divide-and-conquer methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.neunet.2021.06.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6008-6614</orcidid><orcidid>https://orcid.org/0000-0002-3114-6120</orcidid><orcidid>https://orcid.org/0000-0002-0951-0045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2021-11, Vol.143, p.368-376 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2548411819 |
source | Elsevier ScienceDirect Journals |
subjects | Distributed learning Kernel method Optimal rate Randomized sketches |
title | Distributed learning for sketched kernel regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20learning%20for%20sketched%20kernel%20regression&rft.jtitle=Neural%20networks&rft.au=Lian,%20Heng&rft.date=2021-11&rft.volume=143&rft.spage=368&rft.epage=376&rft.pages=368-376&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2021.06.020&rft_dat=%3Cproquest_cross%3E2548411819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548411819&rft_id=info:pmid/&rft_els_id=S0893608021002525&rfr_iscdi=true |