Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics

To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-07, Vol.125 (27), p.7485-7498
Hauptverfasser: van der Haven, Dingeman L. H, Köhler, Stephan, Schreiner, Eduard, in ’t Veld, Pieter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7498
container_issue 27
container_start_page 7485
container_title The journal of physical chemistry. B
container_volume 125
creator van der Haven, Dingeman L. H
Köhler, Stephan
Schreiner, Eduard
in ’t Veld, Pieter J
description To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.
doi_str_mv 10.1021/acs.jpcb.0c11274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2547542327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547542327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMQCMEEmNw55gjBzqStGm7I-oYIA0xCThHTuaKTG3TJS3a_p6O7srBsmU_W_Ij5JazGWeCP4AJs21r9IwZzkWWnJEJl4JFQ2TnpzrlLL0kVyFsGRNS5OmEVEXlAm6ipfM1LRzubeiwMUifdj101jW0dJ6uvyEg_cAW_Nh0JV276lCjt4a-2X3XewzUNnRhQ7DtAP0gXYPvrKmQLg4N1NaEa3JRQhXw5pSn5Gv59Fm8RKv359ficRVBzOMummdGzuM8LTFlWrMc5ozNMcGN1Frnici1zBIUG2kSAQCMlSC4zkCCiBE5xFNyN95tvdv1GDpV22CwqqBB1wclZJLJRMQiG1A2osa7EDyWqvW2Bn9QnKmjWDWIVUex6iR2WLkfV_4mrvfN8Mv_-C-yOX4W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547542327</pqid></control><display><type>article</type><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><source>American Chemical Society Journals</source><creator>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</creator><creatorcontrib>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</creatorcontrib><description>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c11274</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2021-07, Vol.125 (27), p.7485-7498</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</citedby><cites>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</cites><orcidid>0000-0002-5120-4279 ; 0000-0001-8460-5688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c11274$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c11274$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>van der Haven, Dingeman L. H</creatorcontrib><creatorcontrib>Köhler, Stephan</creatorcontrib><creatorcontrib>Schreiner, Eduard</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J</creatorcontrib><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMQCMEEmNw55gjBzqStGm7I-oYIA0xCThHTuaKTG3TJS3a_p6O7srBsmU_W_Ij5JazGWeCP4AJs21r9IwZzkWWnJEJl4JFQ2TnpzrlLL0kVyFsGRNS5OmEVEXlAm6ipfM1LRzubeiwMUifdj101jW0dJ6uvyEg_cAW_Nh0JV276lCjt4a-2X3XewzUNnRhQ7DtAP0gXYPvrKmQLg4N1NaEa3JRQhXw5pSn5Gv59Fm8RKv359ficRVBzOMummdGzuM8LTFlWrMc5ozNMcGN1Frnici1zBIUG2kSAQCMlSC4zkCCiBE5xFNyN95tvdv1GDpV22CwqqBB1wclZJLJRMQiG1A2osa7EDyWqvW2Bn9QnKmjWDWIVUex6iR2WLkfV_4mrvfN8Mv_-C-yOX4W</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>van der Haven, Dingeman L. H</creator><creator>Köhler, Stephan</creator><creator>Schreiner, Eduard</creator><creator>in ’t Veld, Pieter J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5120-4279</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid></search><sort><creationdate>20210715</creationdate><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><author>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Haven, Dingeman L. H</creatorcontrib><creatorcontrib>Köhler, Stephan</creatorcontrib><creatorcontrib>Schreiner, Eduard</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Haven, Dingeman L. H</au><au>Köhler, Stephan</au><au>Schreiner, Eduard</au><au>in ’t Veld, Pieter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>125</volume><issue>27</issue><spage>7485</spage><epage>7498</epage><pages>7485-7498</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcb.0c11274</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5120-4279</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-07, Vol.125 (27), p.7485-7498
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2547542327
source American Chemical Society Journals
subjects B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials
title Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Coexistence%20Equation%20for%20Phase%20Separation%20of%20Polymeric%20Mixtures%20in%20Dissipative%20Particle%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=van%20der%20Haven,%20Dingeman%20L.%20H&rft.date=2021-07-15&rft.volume=125&rft.issue=27&rft.spage=7485&rft.epage=7498&rft.pages=7485-7498&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c11274&rft_dat=%3Cproquest_cross%3E2547542327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547542327&rft_id=info:pmid/&rfr_iscdi=true