Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics
To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2021-07, Vol.125 (27), p.7485-7498 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7498 |
---|---|
container_issue | 27 |
container_start_page | 7485 |
container_title | The journal of physical chemistry. B |
container_volume | 125 |
creator | van der Haven, Dingeman L. H Köhler, Stephan Schreiner, Eduard in ’t Veld, Pieter J |
description | To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior. |
doi_str_mv | 10.1021/acs.jpcb.0c11274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2547542327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547542327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMQCMEEmNw55gjBzqStGm7I-oYIA0xCThHTuaKTG3TJS3a_p6O7srBsmU_W_Ij5JazGWeCP4AJs21r9IwZzkWWnJEJl4JFQ2TnpzrlLL0kVyFsGRNS5OmEVEXlAm6ipfM1LRzubeiwMUifdj101jW0dJ6uvyEg_cAW_Nh0JV276lCjt4a-2X3XewzUNnRhQ7DtAP0gXYPvrKmQLg4N1NaEa3JRQhXw5pSn5Gv59Fm8RKv359ficRVBzOMummdGzuM8LTFlWrMc5ozNMcGN1Frnici1zBIUG2kSAQCMlSC4zkCCiBE5xFNyN95tvdv1GDpV22CwqqBB1wclZJLJRMQiG1A2osa7EDyWqvW2Bn9QnKmjWDWIVUex6iR2WLkfV_4mrvfN8Mv_-C-yOX4W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547542327</pqid></control><display><type>article</type><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><source>American Chemical Society Journals</source><creator>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</creator><creatorcontrib>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</creatorcontrib><description>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c11274</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><ispartof>The journal of physical chemistry. B, 2021-07, Vol.125 (27), p.7485-7498</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</citedby><cites>FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</cites><orcidid>0000-0002-5120-4279 ; 0000-0001-8460-5688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c11274$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c11274$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>van der Haven, Dingeman L. H</creatorcontrib><creatorcontrib>Köhler, Stephan</creatorcontrib><creatorcontrib>Schreiner, Eduard</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J</creatorcontrib><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</description><subject>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMQCMEEmNw55gjBzqStGm7I-oYIA0xCThHTuaKTG3TJS3a_p6O7srBsmU_W_Ij5JazGWeCP4AJs21r9IwZzkWWnJEJl4JFQ2TnpzrlLL0kVyFsGRNS5OmEVEXlAm6ipfM1LRzubeiwMUifdj101jW0dJ6uvyEg_cAW_Nh0JV276lCjt4a-2X3XewzUNnRhQ7DtAP0gXYPvrKmQLg4N1NaEa3JRQhXw5pSn5Gv59Fm8RKv359ficRVBzOMummdGzuM8LTFlWrMc5ozNMcGN1Frnici1zBIUG2kSAQCMlSC4zkCCiBE5xFNyN95tvdv1GDpV22CwqqBB1wclZJLJRMQiG1A2osa7EDyWqvW2Bn9QnKmjWDWIVUex6iR2WLkfV_4mrvfN8Mv_-C-yOX4W</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>van der Haven, Dingeman L. H</creator><creator>Köhler, Stephan</creator><creator>Schreiner, Eduard</creator><creator>in ’t Veld, Pieter J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5120-4279</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid></search><sort><creationdate>20210715</creationdate><title>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</title><author>van der Haven, Dingeman L. H ; Köhler, Stephan ; Schreiner, Eduard ; in ’t Veld, Pieter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-97c59386fe60bb08a9009e4ed5bbb8428b574e2d5c42aaa00fa21b7a5a23ee1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Haven, Dingeman L. H</creatorcontrib><creatorcontrib>Köhler, Stephan</creatorcontrib><creatorcontrib>Schreiner, Eduard</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Haven, Dingeman L. H</au><au>Köhler, Stephan</au><au>Schreiner, Eduard</au><au>in ’t Veld, Pieter J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>125</volume><issue>27</issue><spage>7485</spage><epage>7498</epage><pages>7485-7498</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>To date, no extensive study of the phase diagram for binary fluid mixtures in dissipative particle dynamics (DPD) has been published. This is especially pertinent for newer parameterization schemes where the self–self interaction, or the effective volume, of different particle types is varied. This work presents an exhaustive study of the parameter space concerning DPD particles with soft interaction potentials. Moreover, we propose a closed-form coexistence equation or binodal curve that is inspired by the Flory–Huggins model. This equation describes the phase diagram of all binary mixtures made up out of monomers, homopolymers, and the mixtures thereof when self–self interactions are varied. The mean absolute percentage error (MAPE) of the equation on simulated data, including validation simulations, is 1.02%. The equation can a priori predict the phase separation of mixtures using only DPD interaction parameters. The proposed coexistence equation can therefore be used to directly validate interaction parameters resulting from novel parameterization schemes, including coarse graining and equations of state, without the need for additional simulations. Finally, it is shown that the choice of bond potential markedly influences phase behavior.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcb.0c11274</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5120-4279</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2021-07, Vol.125 (27), p.7485-7498 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2547542327 |
source | American Chemical Society Journals |
subjects | B: Soft Matter, Fluid Interfaces, Colloids, Polymers, and Glassy Materials |
title | Closed-Form Coexistence Equation for Phase Separation of Polymeric Mixtures in Dissipative Particle Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Coexistence%20Equation%20for%20Phase%20Separation%20of%20Polymeric%20Mixtures%20in%20Dissipative%20Particle%20Dynamics&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=van%20der%20Haven,%20Dingeman%20L.%20H&rft.date=2021-07-15&rft.volume=125&rft.issue=27&rft.spage=7485&rft.epage=7498&rft.pages=7485-7498&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c11274&rft_dat=%3Cproquest_cross%3E2547542327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547542327&rft_id=info:pmid/&rfr_iscdi=true |