From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools
Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigma...
Gespeichert in:
Veröffentlicht in: | Journal of clinical psychology 2022-02, Vol.78 (2), p.137-148 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 2 |
container_start_page | 137 |
container_title | Journal of clinical psychology |
container_volume | 78 |
creator | Luk, Jeremy W. Pruitt, Larry D. Smolenski, Derek J. Tucker, Jennifer Workman, Don E. Belsher, Bradley E. |
description | Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools. |
doi_str_mv | 10.1002/jclp.23202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2547539311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629788381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoznjZ-ABScCNCNZemadzJ4HhhQBe6Lml6ihky7Zi0I9347Gamo4gLV-dw8v0fgR-hE4IvCcb0aq7t8pIyiukOGhMsRZykQu6icXgksRQpHaED7-cY4wQTvo9GLCGSS5mN0efUNYsIVuD6UvWRNRVESwel0a1pah-1TeQ7o025Oa-gXp-vo4k1tdHKRqouI2jfNrsOgQA6NURN_Tu6Ma4gBJTtW6ODubH-CO1Vyno43s5D9Dq9fZncx7Onu4fJzSzWjAsaqwKKikuaQVVIXlCeFBiYkIIAUVxWkqdpQlIoSip0SVWaVQkUDGiVMi0UZYfofPAuXfPegW_zhfEarFU1NJ3Pg1FwJhkhAT37g86bzoVfByqlUmQZy9bUxUBp13jvoMqXziyU63OC83Ur-bqVfNNKgE-3yq5YQPmDftcQADIAH8ZC_48qf5zMngfpF1dbmdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629788381</pqid></control><display><type>article</type><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Education Source</source><creator>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</creator><creatorcontrib>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</creatorcontrib><description>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</description><identifier>ISSN: 0021-9762</identifier><identifier>EISSN: 1097-4679</identifier><identifier>DOI: 10.1002/jclp.23202</identifier><identifier>PMID: 34195998</identifier><language>eng</language><publisher>United States: Wiley Periodicals Inc</publisher><subject>Artificial Intelligence ; big data ; Delivery of Health Care ; ethics ; Humans ; Informed consent ; Machine Learning ; Predictive analytics ; Risk Assessment ; suicide ; Suicide - prevention & control ; Suicide prevention ; Suicides & suicide attempts</subject><ispartof>Journal of clinical psychology, 2022-02, Vol.78 (2), p.137-148</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</citedby><cites>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</cites><orcidid>0000-0003-2243-1170 ; 0000-0002-9061-1555 ; 0000-0003-4767-075X ; 0000-0001-5338-2899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjclp.23202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjclp.23202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34195998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luk, Jeremy W.</creatorcontrib><creatorcontrib>Pruitt, Larry D.</creatorcontrib><creatorcontrib>Smolenski, Derek J.</creatorcontrib><creatorcontrib>Tucker, Jennifer</creatorcontrib><creatorcontrib>Workman, Don E.</creatorcontrib><creatorcontrib>Belsher, Bradley E.</creatorcontrib><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><title>Journal of clinical psychology</title><addtitle>J Clin Psychol</addtitle><description>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</description><subject>Artificial Intelligence</subject><subject>big data</subject><subject>Delivery of Health Care</subject><subject>ethics</subject><subject>Humans</subject><subject>Informed consent</subject><subject>Machine Learning</subject><subject>Predictive analytics</subject><subject>Risk Assessment</subject><subject>suicide</subject><subject>Suicide - prevention & control</subject><subject>Suicide prevention</subject><subject>Suicides & suicide attempts</subject><issn>0021-9762</issn><issn>1097-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctKxDAUhoMoznjZ-ABScCNCNZemadzJ4HhhQBe6Lml6ihky7Zi0I9347Gamo4gLV-dw8v0fgR-hE4IvCcb0aq7t8pIyiukOGhMsRZykQu6icXgksRQpHaED7-cY4wQTvo9GLCGSS5mN0efUNYsIVuD6UvWRNRVESwel0a1pah-1TeQ7o025Oa-gXp-vo4k1tdHKRqouI2jfNrsOgQA6NURN_Tu6Ma4gBJTtW6ODubH-CO1Vyno43s5D9Dq9fZncx7Onu4fJzSzWjAsaqwKKikuaQVVIXlCeFBiYkIIAUVxWkqdpQlIoSip0SVWaVQkUDGiVMi0UZYfofPAuXfPegW_zhfEarFU1NJ3Pg1FwJhkhAT37g86bzoVfByqlUmQZy9bUxUBp13jvoMqXziyU63OC83Ur-bqVfNNKgE-3yq5YQPmDftcQADIAH8ZC_48qf5zMngfpF1dbmdo</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Luk, Jeremy W.</creator><creator>Pruitt, Larry D.</creator><creator>Smolenski, Derek J.</creator><creator>Tucker, Jennifer</creator><creator>Workman, Don E.</creator><creator>Belsher, Bradley E.</creator><general>Wiley Periodicals Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2243-1170</orcidid><orcidid>https://orcid.org/0000-0002-9061-1555</orcidid><orcidid>https://orcid.org/0000-0003-4767-075X</orcidid><orcidid>https://orcid.org/0000-0001-5338-2899</orcidid></search><sort><creationdate>202202</creationdate><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><author>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>big data</topic><topic>Delivery of Health Care</topic><topic>ethics</topic><topic>Humans</topic><topic>Informed consent</topic><topic>Machine Learning</topic><topic>Predictive analytics</topic><topic>Risk Assessment</topic><topic>suicide</topic><topic>Suicide - prevention & control</topic><topic>Suicide prevention</topic><topic>Suicides & suicide attempts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luk, Jeremy W.</creatorcontrib><creatorcontrib>Pruitt, Larry D.</creatorcontrib><creatorcontrib>Smolenski, Derek J.</creatorcontrib><creatorcontrib>Tucker, Jennifer</creatorcontrib><creatorcontrib>Workman, Don E.</creatorcontrib><creatorcontrib>Belsher, Bradley E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luk, Jeremy W.</au><au>Pruitt, Larry D.</au><au>Smolenski, Derek J.</au><au>Tucker, Jennifer</au><au>Workman, Don E.</au><au>Belsher, Bradley E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</atitle><jtitle>Journal of clinical psychology</jtitle><addtitle>J Clin Psychol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>78</volume><issue>2</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>0021-9762</issn><eissn>1097-4679</eissn><abstract>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</abstract><cop>United States</cop><pub>Wiley Periodicals Inc</pub><pmid>34195998</pmid><doi>10.1002/jclp.23202</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2243-1170</orcidid><orcidid>https://orcid.org/0000-0002-9061-1555</orcidid><orcidid>https://orcid.org/0000-0003-4767-075X</orcidid><orcidid>https://orcid.org/0000-0001-5338-2899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9762 |
ispartof | Journal of clinical psychology, 2022-02, Vol.78 (2), p.137-148 |
issn | 0021-9762 1097-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_2547539311 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Education Source |
subjects | Artificial Intelligence big data Delivery of Health Care ethics Humans Informed consent Machine Learning Predictive analytics Risk Assessment suicide Suicide - prevention & control Suicide prevention Suicides & suicide attempts |
title | From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20everyday%20life%20predictions%20to%20suicide%20prevention:%20Clinical%20and%20ethical%20considerations%20in%20suicide%20predictive%20analytic%20tools&rft.jtitle=Journal%20of%20clinical%20psychology&rft.au=Luk,%20Jeremy%20W.&rft.date=2022-02&rft.volume=78&rft.issue=2&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=0021-9762&rft.eissn=1097-4679&rft_id=info:doi/10.1002/jclp.23202&rft_dat=%3Cproquest_cross%3E2629788381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629788381&rft_id=info:pmid/34195998&rfr_iscdi=true |