From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools

Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical psychology 2022-02, Vol.78 (2), p.137-148
Hauptverfasser: Luk, Jeremy W., Pruitt, Larry D., Smolenski, Derek J., Tucker, Jennifer, Workman, Don E., Belsher, Bradley E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 2
container_start_page 137
container_title Journal of clinical psychology
container_volume 78
creator Luk, Jeremy W.
Pruitt, Larry D.
Smolenski, Derek J.
Tucker, Jennifer
Workman, Don E.
Belsher, Bradley E.
description Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.
doi_str_mv 10.1002/jclp.23202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2547539311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629788381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoznjZ-ABScCNCNZemadzJ4HhhQBe6Lml6ihky7Zi0I9347Gamo4gLV-dw8v0fgR-hE4IvCcb0aq7t8pIyiukOGhMsRZykQu6icXgksRQpHaED7-cY4wQTvo9GLCGSS5mN0efUNYsIVuD6UvWRNRVESwel0a1pah-1TeQ7o025Oa-gXp-vo4k1tdHKRqouI2jfNrsOgQA6NURN_Tu6Ma4gBJTtW6ODubH-CO1Vyno43s5D9Dq9fZncx7Onu4fJzSzWjAsaqwKKikuaQVVIXlCeFBiYkIIAUVxWkqdpQlIoSip0SVWaVQkUDGiVMi0UZYfofPAuXfPegW_zhfEarFU1NJ3Pg1FwJhkhAT37g86bzoVfByqlUmQZy9bUxUBp13jvoMqXziyU63OC83Ur-bqVfNNKgE-3yq5YQPmDftcQADIAH8ZC_48qf5zMngfpF1dbmdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629788381</pqid></control><display><type>article</type><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Education Source</source><creator>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</creator><creatorcontrib>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</creatorcontrib><description>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</description><identifier>ISSN: 0021-9762</identifier><identifier>EISSN: 1097-4679</identifier><identifier>DOI: 10.1002/jclp.23202</identifier><identifier>PMID: 34195998</identifier><language>eng</language><publisher>United States: Wiley Periodicals Inc</publisher><subject>Artificial Intelligence ; big data ; Delivery of Health Care ; ethics ; Humans ; Informed consent ; Machine Learning ; Predictive analytics ; Risk Assessment ; suicide ; Suicide - prevention &amp; control ; Suicide prevention ; Suicides &amp; suicide attempts</subject><ispartof>Journal of clinical psychology, 2022-02, Vol.78 (2), p.137-148</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</citedby><cites>FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</cites><orcidid>0000-0003-2243-1170 ; 0000-0002-9061-1555 ; 0000-0003-4767-075X ; 0000-0001-5338-2899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjclp.23202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjclp.23202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34195998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luk, Jeremy W.</creatorcontrib><creatorcontrib>Pruitt, Larry D.</creatorcontrib><creatorcontrib>Smolenski, Derek J.</creatorcontrib><creatorcontrib>Tucker, Jennifer</creatorcontrib><creatorcontrib>Workman, Don E.</creatorcontrib><creatorcontrib>Belsher, Bradley E.</creatorcontrib><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><title>Journal of clinical psychology</title><addtitle>J Clin Psychol</addtitle><description>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</description><subject>Artificial Intelligence</subject><subject>big data</subject><subject>Delivery of Health Care</subject><subject>ethics</subject><subject>Humans</subject><subject>Informed consent</subject><subject>Machine Learning</subject><subject>Predictive analytics</subject><subject>Risk Assessment</subject><subject>suicide</subject><subject>Suicide - prevention &amp; control</subject><subject>Suicide prevention</subject><subject>Suicides &amp; suicide attempts</subject><issn>0021-9762</issn><issn>1097-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctKxDAUhoMoznjZ-ABScCNCNZemadzJ4HhhQBe6Lml6ihky7Zi0I9347Gamo4gLV-dw8v0fgR-hE4IvCcb0aq7t8pIyiukOGhMsRZykQu6icXgksRQpHaED7-cY4wQTvo9GLCGSS5mN0efUNYsIVuD6UvWRNRVESwel0a1pah-1TeQ7o025Oa-gXp-vo4k1tdHKRqouI2jfNrsOgQA6NURN_Tu6Ma4gBJTtW6ODubH-CO1Vyno43s5D9Dq9fZncx7Onu4fJzSzWjAsaqwKKikuaQVVIXlCeFBiYkIIAUVxWkqdpQlIoSip0SVWaVQkUDGiVMi0UZYfofPAuXfPegW_zhfEarFU1NJ3Pg1FwJhkhAT37g86bzoVfByqlUmQZy9bUxUBp13jvoMqXziyU63OC83Ur-bqVfNNKgE-3yq5YQPmDftcQADIAH8ZC_48qf5zMngfpF1dbmdo</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Luk, Jeremy W.</creator><creator>Pruitt, Larry D.</creator><creator>Smolenski, Derek J.</creator><creator>Tucker, Jennifer</creator><creator>Workman, Don E.</creator><creator>Belsher, Bradley E.</creator><general>Wiley Periodicals Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2243-1170</orcidid><orcidid>https://orcid.org/0000-0002-9061-1555</orcidid><orcidid>https://orcid.org/0000-0003-4767-075X</orcidid><orcidid>https://orcid.org/0000-0001-5338-2899</orcidid></search><sort><creationdate>202202</creationdate><title>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</title><author>Luk, Jeremy W. ; Pruitt, Larry D. ; Smolenski, Derek J. ; Tucker, Jennifer ; Workman, Don E. ; Belsher, Bradley E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-abebf5928efb95b254b0e37971e1a59f9566416ebd27cd2a68f4eb3e2f63c7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>big data</topic><topic>Delivery of Health Care</topic><topic>ethics</topic><topic>Humans</topic><topic>Informed consent</topic><topic>Machine Learning</topic><topic>Predictive analytics</topic><topic>Risk Assessment</topic><topic>suicide</topic><topic>Suicide - prevention &amp; control</topic><topic>Suicide prevention</topic><topic>Suicides &amp; suicide attempts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luk, Jeremy W.</creatorcontrib><creatorcontrib>Pruitt, Larry D.</creatorcontrib><creatorcontrib>Smolenski, Derek J.</creatorcontrib><creatorcontrib>Tucker, Jennifer</creatorcontrib><creatorcontrib>Workman, Don E.</creatorcontrib><creatorcontrib>Belsher, Bradley E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luk, Jeremy W.</au><au>Pruitt, Larry D.</au><au>Smolenski, Derek J.</au><au>Tucker, Jennifer</au><au>Workman, Don E.</au><au>Belsher, Bradley E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools</atitle><jtitle>Journal of clinical psychology</jtitle><addtitle>J Clin Psychol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>78</volume><issue>2</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>0021-9762</issn><eissn>1097-4679</eissn><abstract>Advances in artificial intelligence and machine learning have fueled growing interest in the application of predictive analytics to identify high‐risk suicidal patients. Such application will require the aggregation of large‐scale, sensitive patient data to help inform complex and potentially stigmatizing health care decisions. This paper provides a description of how suicide prediction is uniquely difficult by comparing it to nonmedical (weather and traffic forecasting) and medical predictions (cancer and human immunodeficiency virus risk), followed by clinical and ethical challenges presented within a risk‐benefit conceptual framework. Because the misidentification of suicide risk may be associated with unintended negative consequences, clinicians and policymakers need to carefully weigh the risks and benefits of using suicide predictive analytics across health care populations. Practical recommendations are provided to strengthen the protection of patient rights and enhance the clinical utility of suicide predictive analytics tools.</abstract><cop>United States</cop><pub>Wiley Periodicals Inc</pub><pmid>34195998</pmid><doi>10.1002/jclp.23202</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2243-1170</orcidid><orcidid>https://orcid.org/0000-0002-9061-1555</orcidid><orcidid>https://orcid.org/0000-0003-4767-075X</orcidid><orcidid>https://orcid.org/0000-0001-5338-2899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9762
ispartof Journal of clinical psychology, 2022-02, Vol.78 (2), p.137-148
issn 0021-9762
1097-4679
language eng
recordid cdi_proquest_miscellaneous_2547539311
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Education Source
subjects Artificial Intelligence
big data
Delivery of Health Care
ethics
Humans
Informed consent
Machine Learning
Predictive analytics
Risk Assessment
suicide
Suicide - prevention & control
Suicide prevention
Suicides & suicide attempts
title From everyday life predictions to suicide prevention: Clinical and ethical considerations in suicide predictive analytic tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20everyday%20life%20predictions%20to%20suicide%20prevention:%20Clinical%20and%20ethical%20considerations%20in%20suicide%20predictive%20analytic%20tools&rft.jtitle=Journal%20of%20clinical%20psychology&rft.au=Luk,%20Jeremy%20W.&rft.date=2022-02&rft.volume=78&rft.issue=2&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=0021-9762&rft.eissn=1097-4679&rft_id=info:doi/10.1002/jclp.23202&rft_dat=%3Cproquest_cross%3E2629788381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629788381&rft_id=info:pmid/34195998&rfr_iscdi=true