Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance

Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-07, Vol.13 (27), p.31843-31851
Hauptverfasser: Cheng, Zhe, Mu, Fengwen, Ji, Xiaoyang, You, Tiangui, Xu, Wenhui, Suga, Tadatomo, Ou, Xin, Cahill, David G, Graham, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31851
container_issue 27
container_start_page 31843
container_title ACS applied materials & interfaces
container_volume 13
creator Cheng, Zhe
Mu, Fengwen
Ji, Xiaoyang
You, Tiangui
Xu, Wenhui
Suga, Tadatomo
Ou, Xin
Cahill, David G
Graham, Samuel
description Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal–nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples. Both the β-Ga2O3 thermal conductivity and the buried β-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 μm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.
doi_str_mv 10.1021/acsami.1c06212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2547535235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547535235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-e8fba07f82c14650e75fbf9473e4a35c0236ba88d984b54be432bec52a2453f73</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXWzH0l61FptoSDY6jVMNrN1S7Jbd5NDxT_e1BZvnmaYee_N8Iui64SOEsqSO1ABGjNKFE1Zwk6iQTIWIs6ZZKd_vRDn0UUIG0pTzqgcRN-rD_QN1OTdhA5q8wWtcZY4TR46b7Aic9ui16AwkKmFsu5H5Y687mVkada2t4KtyLJFqHbxsoUWyQz7tV3vU1amwfjRNWAs-T3lPOoaVQtW4WV0pqEOeHWsw-jtabqazOLFy_N8cr-IgdOsjTHXJdBM50wlIpUUM6lLPRYZRwFcKsp4WkKeV-NclFKUKDgrUUkGTEiuMz6Mbg65W-8-Owxt0ZigsK7BoutCwaTIJJeMy146OkiVdyH0vxZbbxrwuyKhxR5zccBcHDH3htuDoZ8XG9f5nkj4T_wD31GAsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547535235</pqid></control><display><type>article</type><title>Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance</title><source>ACS Publications</source><creator>Cheng, Zhe ; Mu, Fengwen ; Ji, Xiaoyang ; You, Tiangui ; Xu, Wenhui ; Suga, Tadatomo ; Ou, Xin ; Cahill, David G ; Graham, Samuel</creator><creatorcontrib>Cheng, Zhe ; Mu, Fengwen ; Ji, Xiaoyang ; You, Tiangui ; Xu, Wenhui ; Suga, Tadatomo ; Ou, Xin ; Cahill, David G ; Graham, Samuel</creatorcontrib><description>Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal–nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples. Both the β-Ga2O3 thermal conductivity and the buried β-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 μm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c06212</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2021-07, Vol.13 (27), p.31843-31851</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-e8fba07f82c14650e75fbf9473e4a35c0236ba88d984b54be432bec52a2453f73</citedby><cites>FETCH-LOGICAL-a307t-e8fba07f82c14650e75fbf9473e4a35c0236ba88d984b54be432bec52a2453f73</cites><orcidid>0000-0002-0316-9958 ; 0000-0001-7396-9347 ; 0000-0002-1299-1636 ; 0000-0001-7827-2979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c06212$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c06212$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Ji, Xiaoyang</creatorcontrib><creatorcontrib>You, Tiangui</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><creatorcontrib>Ou, Xin</creatorcontrib><creatorcontrib>Cahill, David G</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><title>Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal–nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples. Both the β-Ga2O3 thermal conductivity and the buried β-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 μm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxYMoWKtXz3sUIXWzH0l61FptoSDY6jVMNrN1S7Jbd5NDxT_e1BZvnmaYee_N8Iui64SOEsqSO1ABGjNKFE1Zwk6iQTIWIs6ZZKd_vRDn0UUIG0pTzqgcRN-rD_QN1OTdhA5q8wWtcZY4TR46b7Aic9ui16AwkKmFsu5H5Y687mVkada2t4KtyLJFqHbxsoUWyQz7tV3vU1amwfjRNWAs-T3lPOoaVQtW4WV0pqEOeHWsw-jtabqazOLFy_N8cr-IgdOsjTHXJdBM50wlIpUUM6lLPRYZRwFcKsp4WkKeV-NclFKUKDgrUUkGTEiuMz6Mbg65W-8-Owxt0ZigsK7BoutCwaTIJJeMy146OkiVdyH0vxZbbxrwuyKhxR5zccBcHDH3htuDoZ8XG9f5nkj4T_wD31GAsQ</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Cheng, Zhe</creator><creator>Mu, Fengwen</creator><creator>Ji, Xiaoyang</creator><creator>You, Tiangui</creator><creator>Xu, Wenhui</creator><creator>Suga, Tadatomo</creator><creator>Ou, Xin</creator><creator>Cahill, David G</creator><creator>Graham, Samuel</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0316-9958</orcidid><orcidid>https://orcid.org/0000-0001-7396-9347</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid></search><sort><creationdate>20210714</creationdate><title>Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance</title><author>Cheng, Zhe ; Mu, Fengwen ; Ji, Xiaoyang ; You, Tiangui ; Xu, Wenhui ; Suga, Tadatomo ; Ou, Xin ; Cahill, David G ; Graham, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-e8fba07f82c14650e75fbf9473e4a35c0236ba88d984b54be432bec52a2453f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Ji, Xiaoyang</creatorcontrib><creatorcontrib>You, Tiangui</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><creatorcontrib>Ou, Xin</creatorcontrib><creatorcontrib>Cahill, David G</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhe</au><au>Mu, Fengwen</au><au>Ji, Xiaoyang</au><au>You, Tiangui</au><au>Xu, Wenhui</au><au>Suga, Tadatomo</au><au>Ou, Xin</au><au>Cahill, David G</au><au>Graham, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>13</volume><issue>27</issue><spage>31843</spage><epage>31851</epage><pages>31843-31851</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal–nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for β-Ga2O3-SiC samples. Both the β-Ga2O3 thermal conductivity and the buried β-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 μm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c06212</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0316-9958</orcidid><orcidid>https://orcid.org/0000-0001-7396-9347</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-07, Vol.13 (27), p.31843-31851
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2547535235
source ACS Publications
subjects Functional Inorganic Materials and Devices
title Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Visualization%20of%20Buried%20Interfaces%20Enabled%20by%20Ratio%20Signal%20and%20Steady-State%20Heating%20of%20Time-Domain%20Thermoreflectance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cheng,%20Zhe&rft.date=2021-07-14&rft.volume=13&rft.issue=27&rft.spage=31843&rft.epage=31851&rft.pages=31843-31851&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c06212&rft_dat=%3Cproquest_cross%3E2547535235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547535235&rft_id=info:pmid/&rfr_iscdi=true