A spline-based parameter estimation technique for static models of elastic structures
We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence re...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 1989-05, Vol.5 (3), p.161-175, Article 161 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 3 |
container_start_page | 161 |
container_title | Applied numerical mathematics |
container_volume | 5 |
creator | Dutt, P. Ta'asan, S. |
description | We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates. |
doi_str_mv | 10.1016/0168-9274(89)90032-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25464689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168927489900329</els_id><sourcerecordid>25464689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</originalsourceid><addsrcrecordid>eNqFkM9LHTEQx0Op0Ff1P_CQg0h7WJvdZHcTDwWRqgXBi57DvNkJTdm3-8zkFfzvzfrEQw_tIQTm-yOZjxAntTqvVd19K8dWrunNF-u-OqV0U7kPYlXbXlet6dRHsXq3fBKfmX8rpdrWqJV4vJS8HeNE1RqYBrmFBBvKlCRxjhvIcZ5kJvw1xacdyTAnyblMUW7mgUaWc5A0Ai8TzmmHeZeIj8RBgJHp-O0-FI_XPx6ubqu7-5ufV5d3FRqtcxUMKQVurbtmbQfdN0YN2gCha43uLA0hIGq1JgCrbXB945DQ2s66zmrq9KE42_du01y-x9lvIiONI0w079g3ZXtT3MVo9kZMM3Oi4LepbJeefa38wtAvgPwCyFvnXxn6JXb61g-MMIYEE0Z-z_ZaOaXbYrv4qx1jfkWXE8Txf2-c7MMTMPiSYF87W9S26Wtb5O97ucCmP5GSZ4w0IQ0xEWY_zPHf_S-PXqEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25464689</pqid></control><display><type>article</type><title>A spline-based parameter estimation technique for static models of elastic structures</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Dutt, P. ; Ta'asan, S.</creator><creatorcontrib>Dutt, P. ; Ta'asan, S.</creatorcontrib><description>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/0168-9274(89)90032-9</identifier><identifier>CODEN: ANMAEL</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier B.V</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Numerical Analysis</subject><ispartof>Applied numerical mathematics, 1989-05, Vol.5 (3), p.161-175, Article 161</ispartof><rights>1989</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</citedby><cites>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0168927489900329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7309035$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutt, P.</creatorcontrib><creatorcontrib>Ta'asan, S.</creatorcontrib><title>A spline-based parameter estimation technique for static models of elastic structures</title><title>Applied numerical mathematics</title><description>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Numerical Analysis</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFkM9LHTEQx0Op0Ff1P_CQg0h7WJvdZHcTDwWRqgXBi57DvNkJTdm3-8zkFfzvzfrEQw_tIQTm-yOZjxAntTqvVd19K8dWrunNF-u-OqV0U7kPYlXbXlet6dRHsXq3fBKfmX8rpdrWqJV4vJS8HeNE1RqYBrmFBBvKlCRxjhvIcZ5kJvw1xacdyTAnyblMUW7mgUaWc5A0Ai8TzmmHeZeIj8RBgJHp-O0-FI_XPx6ubqu7-5ufV5d3FRqtcxUMKQVurbtmbQfdN0YN2gCha43uLA0hIGq1JgCrbXB945DQ2s66zmrq9KE42_du01y-x9lvIiONI0w079g3ZXtT3MVo9kZMM3Oi4LepbJeefa38wtAvgPwCyFvnXxn6JXb61g-MMIYEE0Z-z_ZaOaXbYrv4qx1jfkWXE8Txf2-c7MMTMPiSYF87W9S26Wtb5O97ucCmP5GSZ4w0IQ0xEWY_zPHf_S-PXqEg</recordid><startdate>19890501</startdate><enddate>19890501</enddate><creator>Dutt, P.</creator><creator>Ta'asan, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19890501</creationdate><title>A spline-based parameter estimation technique for static models of elastic structures</title><author>Dutt, P. ; Ta'asan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutt, P.</creatorcontrib><creatorcontrib>Ta'asan, S.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutt, P.</au><au>Ta'asan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spline-based parameter estimation technique for static models of elastic structures</atitle><jtitle>Applied numerical mathematics</jtitle><date>1989-05-01</date><risdate>1989</risdate><volume>5</volume><issue>3</issue><spage>161</spage><epage>175</epage><pages>161-175</pages><artnum>161</artnum><issn>0168-9274</issn><eissn>1873-5460</eissn><coden>ANMAEL</coden><abstract>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</abstract><cop>Legacy CDMS</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-9274(89)90032-9</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 1989-05, Vol.5 (3), p.161-175, Article 161 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_25464689 |
source | Elsevier ScienceDirect Journals; NASA Technical Reports Server |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology Modelling and identification Numerical Analysis |
title | A spline-based parameter estimation technique for static models of elastic structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spline-based%20parameter%20estimation%20technique%20for%20static%20models%20of%20elastic%20structures&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Dutt,%20P.&rft.date=1989-05-01&rft.volume=5&rft.issue=3&rft.spage=161&rft.epage=175&rft.pages=161-175&rft.artnum=161&rft.issn=0168-9274&rft.eissn=1873-5460&rft.coden=ANMAEL&rft_id=info:doi/10.1016/0168-9274(89)90032-9&rft_dat=%3Cproquest_cross%3E25464689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25464689&rft_id=info:pmid/&rft_els_id=0168927489900329&rfr_iscdi=true |