A spline-based parameter estimation technique for static models of elastic structures

We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 1989-05, Vol.5 (3), p.161-175, Article 161
Hauptverfasser: Dutt, P., Ta'asan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 3
container_start_page 161
container_title Applied numerical mathematics
container_volume 5
creator Dutt, P.
Ta'asan, S.
description We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.
doi_str_mv 10.1016/0168-9274(89)90032-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25464689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168927489900329</els_id><sourcerecordid>25464689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</originalsourceid><addsrcrecordid>eNqFkM9LHTEQx0Op0Ff1P_CQg0h7WJvdZHcTDwWRqgXBi57DvNkJTdm3-8zkFfzvzfrEQw_tIQTm-yOZjxAntTqvVd19K8dWrunNF-u-OqV0U7kPYlXbXlet6dRHsXq3fBKfmX8rpdrWqJV4vJS8HeNE1RqYBrmFBBvKlCRxjhvIcZ5kJvw1xacdyTAnyblMUW7mgUaWc5A0Ai8TzmmHeZeIj8RBgJHp-O0-FI_XPx6ubqu7-5ufV5d3FRqtcxUMKQVurbtmbQfdN0YN2gCha43uLA0hIGq1JgCrbXB945DQ2s66zmrq9KE42_du01y-x9lvIiONI0w079g3ZXtT3MVo9kZMM3Oi4LepbJeefa38wtAvgPwCyFvnXxn6JXb61g-MMIYEE0Z-z_ZaOaXbYrv4qx1jfkWXE8Txf2-c7MMTMPiSYF87W9S26Wtb5O97ucCmP5GSZ4w0IQ0xEWY_zPHf_S-PXqEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25464689</pqid></control><display><type>article</type><title>A spline-based parameter estimation technique for static models of elastic structures</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Dutt, P. ; Ta'asan, S.</creator><creatorcontrib>Dutt, P. ; Ta'asan, S.</creatorcontrib><description>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/0168-9274(89)90032-9</identifier><identifier>CODEN: ANMAEL</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier B.V</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Numerical Analysis</subject><ispartof>Applied numerical mathematics, 1989-05, Vol.5 (3), p.161-175, Article 161</ispartof><rights>1989</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</citedby><cites>FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0168927489900329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7309035$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutt, P.</creatorcontrib><creatorcontrib>Ta'asan, S.</creatorcontrib><title>A spline-based parameter estimation technique for static models of elastic structures</title><title>Applied numerical mathematics</title><description>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Numerical Analysis</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFkM9LHTEQx0Op0Ff1P_CQg0h7WJvdZHcTDwWRqgXBi57DvNkJTdm3-8zkFfzvzfrEQw_tIQTm-yOZjxAntTqvVd19K8dWrunNF-u-OqV0U7kPYlXbXlet6dRHsXq3fBKfmX8rpdrWqJV4vJS8HeNE1RqYBrmFBBvKlCRxjhvIcZ5kJvw1xacdyTAnyblMUW7mgUaWc5A0Ai8TzmmHeZeIj8RBgJHp-O0-FI_XPx6ubqu7-5ufV5d3FRqtcxUMKQVurbtmbQfdN0YN2gCha43uLA0hIGq1JgCrbXB945DQ2s66zmrq9KE42_du01y-x9lvIiONI0w079g3ZXtT3MVo9kZMM3Oi4LepbJeefa38wtAvgPwCyFvnXxn6JXb61g-MMIYEE0Z-z_ZaOaXbYrv4qx1jfkWXE8Txf2-c7MMTMPiSYF87W9S26Wtb5O97ucCmP5GSZ4w0IQ0xEWY_zPHf_S-PXqEg</recordid><startdate>19890501</startdate><enddate>19890501</enddate><creator>Dutt, P.</creator><creator>Ta'asan, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19890501</creationdate><title>A spline-based parameter estimation technique for static models of elastic structures</title><author>Dutt, P. ; Ta'asan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-f4e00a9b362b8d37240d34aec954368edffcc30beaa838f9729cec88689683e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutt, P.</creatorcontrib><creatorcontrib>Ta'asan, S.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutt, P.</au><au>Ta'asan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spline-based parameter estimation technique for static models of elastic structures</atitle><jtitle>Applied numerical mathematics</jtitle><date>1989-05-01</date><risdate>1989</risdate><volume>5</volume><issue>3</issue><spage>161</spage><epage>175</epage><pages>161-175</pages><artnum>161</artnum><issn>0168-9274</issn><eissn>1873-5460</eissn><coden>ANMAEL</coden><abstract>We consider the problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem. Under appropriate conditions this problem can be treated as a first-order hyperbolic equation in the unknown coefficient. We develop some continuous dependence results for this problem and propose a spline-based technique for approximating the unknown coefficient based on these results. We establish the convergence of our numerical scheme and obtain error estimates.</abstract><cop>Legacy CDMS</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-9274(89)90032-9</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 1989-05, Vol.5 (3), p.161-175, Article 161
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_25464689
source Elsevier ScienceDirect Journals; NASA Technical Reports Server
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Modelling and identification
Numerical Analysis
title A spline-based parameter estimation technique for static models of elastic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spline-based%20parameter%20estimation%20technique%20for%20static%20models%20of%20elastic%20structures&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Dutt,%20P.&rft.date=1989-05-01&rft.volume=5&rft.issue=3&rft.spage=161&rft.epage=175&rft.pages=161-175&rft.artnum=161&rft.issn=0168-9274&rft.eissn=1873-5460&rft.coden=ANMAEL&rft_id=info:doi/10.1016/0168-9274(89)90032-9&rft_dat=%3Cproquest_cross%3E25464689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25464689&rft_id=info:pmid/&rft_els_id=0168927489900329&rfr_iscdi=true