A prognostic information system for real-time personalized care: Lessons for embedded researchers
Embedded researchers could play a central role in developing tools to personalize care using electronic medical records (EMRs). However, few studies have described the steps involved in developing such tools, or evaluated the key factors in success and failure. This case study describes how we used...
Gespeichert in:
Veröffentlicht in: | Healthcare : the journal of delivery science and innovation 2021-06, Vol.8, p.100486-100486, Article 100486 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100486 |
---|---|
container_issue | |
container_start_page | 100486 |
container_title | Healthcare : the journal of delivery science and innovation |
container_volume | 8 |
creator | Lieu, Tracy A. Herrinton, Lisa J. Needham, Tami Ford, Michael Liu, Liyan Lyons, Deborah Macapinlac, Joseph Neugebauer, Romain Ng, Daniel Prausnitz, Stephanie Robertson, Wendi Schultz, Kristin Stewart, Kam Van Den Eeden, Stephen K. Baer, David M. |
description | Embedded researchers could play a central role in developing tools to personalize care using electronic medical records (EMRs). However, few studies have described the steps involved in developing such tools, or evaluated the key factors in success and failure. This case study describes how we used an EMR-derived data warehouse to develop a prototype informatics tool to help oncologists counsel patients with pancreatic cancer about their prognosis. The tool generated real-time prognostic information based on tumor type and stage, age, comorbidity status and lab tests. Our multidisciplinary team included embedded researchers, application developers, user experience experts, and an oncologist leader.This prototype succeeded in establishing proof of principle, but did not reach adoption into actual practice. In pilot testing, oncologists succeeded in generating prognostic information in real time. A few found it helpful in patient encounters, but all identified critical areas for further development before implementation. Generalizable lessons included the need to (1) include a wide range of potential use cases and stakeholders when selecting use cases for such tools; (2) develop talking points for clinicians to explain results from predictive tools to patients; (3) develop ways to reduce lag time between events and data availability; and (4) keep the options presented in the user interface very simple. This case demonstrates that embedded researchers can lead collaborations using EMR-derived data to create systems for real-time personalized patient counseling, and highlights challenges that such teams can anticipate. |
doi_str_mv | 10.1016/j.hjdsi.2020.100486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545995317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213076420300853</els_id><sourcerecordid>2545995317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3248752cd22808a14b44342d0024f8086b43cc3c316cb3d8a6021a27953bb7b23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gZccvWzN135U8FCKX1DwoueQTWZtyu6mZrZC_fWmXfHoXGZ453kH5iXkmrM5Z7y43c43W4d-Lpg4KkxVxRmZCMFlxspSnP_NhbokM8QtS7UomSj4hJgl3cXw0QccvKW-b0LszOBDT_GAA3Q0CTSCabPBd0B3EDH0pvXf4Kg1Ee7oGjBJeAKhq8G5tIqAYKLdJPyKXDSmRZj99il5f3x4Wz1n69enl9VynVkp-ZBJoaoyF9YJUbHKcFUrJZVwjAnVJKWolbRWWskLW0tXmYIJbkS5yGVdl7WQU3Iz3k3_fO4BB915tNC2poewRy1ylS8SzcuEyhG1MSBGaPQu-s7Eg-ZMHzPVW33KVB8z1WOmyXU_uiB98eUharQeegvOR7CDdsH_6_8BSF-AQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545995317</pqid></control><display><type>article</type><title>A prognostic information system for real-time personalized care: Lessons for embedded researchers</title><source>Alma/SFX Local Collection</source><creator>Lieu, Tracy A. ; Herrinton, Lisa J. ; Needham, Tami ; Ford, Michael ; Liu, Liyan ; Lyons, Deborah ; Macapinlac, Joseph ; Neugebauer, Romain ; Ng, Daniel ; Prausnitz, Stephanie ; Robertson, Wendi ; Schultz, Kristin ; Stewart, Kam ; Van Den Eeden, Stephen K. ; Baer, David M.</creator><creatorcontrib>Lieu, Tracy A. ; Herrinton, Lisa J. ; Needham, Tami ; Ford, Michael ; Liu, Liyan ; Lyons, Deborah ; Macapinlac, Joseph ; Neugebauer, Romain ; Ng, Daniel ; Prausnitz, Stephanie ; Robertson, Wendi ; Schultz, Kristin ; Stewart, Kam ; Van Den Eeden, Stephen K. ; Baer, David M.</creatorcontrib><description>Embedded researchers could play a central role in developing tools to personalize care using electronic medical records (EMRs). However, few studies have described the steps involved in developing such tools, or evaluated the key factors in success and failure. This case study describes how we used an EMR-derived data warehouse to develop a prototype informatics tool to help oncologists counsel patients with pancreatic cancer about their prognosis. The tool generated real-time prognostic information based on tumor type and stage, age, comorbidity status and lab tests. Our multidisciplinary team included embedded researchers, application developers, user experience experts, and an oncologist leader.This prototype succeeded in establishing proof of principle, but did not reach adoption into actual practice. In pilot testing, oncologists succeeded in generating prognostic information in real time. A few found it helpful in patient encounters, but all identified critical areas for further development before implementation. Generalizable lessons included the need to (1) include a wide range of potential use cases and stakeholders when selecting use cases for such tools; (2) develop talking points for clinicians to explain results from predictive tools to patients; (3) develop ways to reduce lag time between events and data availability; and (4) keep the options presented in the user interface very simple. This case demonstrates that embedded researchers can lead collaborations using EMR-derived data to create systems for real-time personalized patient counseling, and highlights challenges that such teams can anticipate.</description><identifier>ISSN: 2213-0764</identifier><identifier>EISSN: 2213-0772</identifier><identifier>DOI: 10.1016/j.hjdsi.2020.100486</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Delivery of health care ; Electronic health records ; Organizational innovation ; Patient-centered care ; Word count: 2,999</subject><ispartof>Healthcare : the journal of delivery science and innovation, 2021-06, Vol.8, p.100486-100486, Article 100486</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-3248752cd22808a14b44342d0024f8086b43cc3c316cb3d8a6021a27953bb7b23</cites><orcidid>0000-0003-1729-5426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lieu, Tracy A.</creatorcontrib><creatorcontrib>Herrinton, Lisa J.</creatorcontrib><creatorcontrib>Needham, Tami</creatorcontrib><creatorcontrib>Ford, Michael</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Lyons, Deborah</creatorcontrib><creatorcontrib>Macapinlac, Joseph</creatorcontrib><creatorcontrib>Neugebauer, Romain</creatorcontrib><creatorcontrib>Ng, Daniel</creatorcontrib><creatorcontrib>Prausnitz, Stephanie</creatorcontrib><creatorcontrib>Robertson, Wendi</creatorcontrib><creatorcontrib>Schultz, Kristin</creatorcontrib><creatorcontrib>Stewart, Kam</creatorcontrib><creatorcontrib>Van Den Eeden, Stephen K.</creatorcontrib><creatorcontrib>Baer, David M.</creatorcontrib><title>A prognostic information system for real-time personalized care: Lessons for embedded researchers</title><title>Healthcare : the journal of delivery science and innovation</title><description>Embedded researchers could play a central role in developing tools to personalize care using electronic medical records (EMRs). However, few studies have described the steps involved in developing such tools, or evaluated the key factors in success and failure. This case study describes how we used an EMR-derived data warehouse to develop a prototype informatics tool to help oncologists counsel patients with pancreatic cancer about their prognosis. The tool generated real-time prognostic information based on tumor type and stage, age, comorbidity status and lab tests. Our multidisciplinary team included embedded researchers, application developers, user experience experts, and an oncologist leader.This prototype succeeded in establishing proof of principle, but did not reach adoption into actual practice. In pilot testing, oncologists succeeded in generating prognostic information in real time. A few found it helpful in patient encounters, but all identified critical areas for further development before implementation. Generalizable lessons included the need to (1) include a wide range of potential use cases and stakeholders when selecting use cases for such tools; (2) develop talking points for clinicians to explain results from predictive tools to patients; (3) develop ways to reduce lag time between events and data availability; and (4) keep the options presented in the user interface very simple. This case demonstrates that embedded researchers can lead collaborations using EMR-derived data to create systems for real-time personalized patient counseling, and highlights challenges that such teams can anticipate.</description><subject>Delivery of health care</subject><subject>Electronic health records</subject><subject>Organizational innovation</subject><subject>Patient-centered care</subject><subject>Word count: 2,999</subject><issn>2213-0764</issn><issn>2213-0772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gZccvWzN135U8FCKX1DwoueQTWZtyu6mZrZC_fWmXfHoXGZ453kH5iXkmrM5Z7y43c43W4d-Lpg4KkxVxRmZCMFlxspSnP_NhbokM8QtS7UomSj4hJgl3cXw0QccvKW-b0LszOBDT_GAA3Q0CTSCabPBd0B3EDH0pvXf4Kg1Ee7oGjBJeAKhq8G5tIqAYKLdJPyKXDSmRZj99il5f3x4Wz1n69enl9VynVkp-ZBJoaoyF9YJUbHKcFUrJZVwjAnVJKWolbRWWskLW0tXmYIJbkS5yGVdl7WQU3Iz3k3_fO4BB915tNC2poewRy1ylS8SzcuEyhG1MSBGaPQu-s7Eg-ZMHzPVW33KVB8z1WOmyXU_uiB98eUharQeegvOR7CDdsH_6_8BSF-AQQ</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Lieu, Tracy A.</creator><creator>Herrinton, Lisa J.</creator><creator>Needham, Tami</creator><creator>Ford, Michael</creator><creator>Liu, Liyan</creator><creator>Lyons, Deborah</creator><creator>Macapinlac, Joseph</creator><creator>Neugebauer, Romain</creator><creator>Ng, Daniel</creator><creator>Prausnitz, Stephanie</creator><creator>Robertson, Wendi</creator><creator>Schultz, Kristin</creator><creator>Stewart, Kam</creator><creator>Van Den Eeden, Stephen K.</creator><creator>Baer, David M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1729-5426</orcidid></search><sort><creationdate>202106</creationdate><title>A prognostic information system for real-time personalized care: Lessons for embedded researchers</title><author>Lieu, Tracy A. ; Herrinton, Lisa J. ; Needham, Tami ; Ford, Michael ; Liu, Liyan ; Lyons, Deborah ; Macapinlac, Joseph ; Neugebauer, Romain ; Ng, Daniel ; Prausnitz, Stephanie ; Robertson, Wendi ; Schultz, Kristin ; Stewart, Kam ; Van Den Eeden, Stephen K. ; Baer, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3248752cd22808a14b44342d0024f8086b43cc3c316cb3d8a6021a27953bb7b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delivery of health care</topic><topic>Electronic health records</topic><topic>Organizational innovation</topic><topic>Patient-centered care</topic><topic>Word count: 2,999</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieu, Tracy A.</creatorcontrib><creatorcontrib>Herrinton, Lisa J.</creatorcontrib><creatorcontrib>Needham, Tami</creatorcontrib><creatorcontrib>Ford, Michael</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Lyons, Deborah</creatorcontrib><creatorcontrib>Macapinlac, Joseph</creatorcontrib><creatorcontrib>Neugebauer, Romain</creatorcontrib><creatorcontrib>Ng, Daniel</creatorcontrib><creatorcontrib>Prausnitz, Stephanie</creatorcontrib><creatorcontrib>Robertson, Wendi</creatorcontrib><creatorcontrib>Schultz, Kristin</creatorcontrib><creatorcontrib>Stewart, Kam</creatorcontrib><creatorcontrib>Van Den Eeden, Stephen K.</creatorcontrib><creatorcontrib>Baer, David M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Healthcare : the journal of delivery science and innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieu, Tracy A.</au><au>Herrinton, Lisa J.</au><au>Needham, Tami</au><au>Ford, Michael</au><au>Liu, Liyan</au><au>Lyons, Deborah</au><au>Macapinlac, Joseph</au><au>Neugebauer, Romain</au><au>Ng, Daniel</au><au>Prausnitz, Stephanie</au><au>Robertson, Wendi</au><au>Schultz, Kristin</au><au>Stewart, Kam</au><au>Van Den Eeden, Stephen K.</au><au>Baer, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prognostic information system for real-time personalized care: Lessons for embedded researchers</atitle><jtitle>Healthcare : the journal of delivery science and innovation</jtitle><date>2021-06</date><risdate>2021</risdate><volume>8</volume><spage>100486</spage><epage>100486</epage><pages>100486-100486</pages><artnum>100486</artnum><issn>2213-0764</issn><eissn>2213-0772</eissn><abstract>Embedded researchers could play a central role in developing tools to personalize care using electronic medical records (EMRs). However, few studies have described the steps involved in developing such tools, or evaluated the key factors in success and failure. This case study describes how we used an EMR-derived data warehouse to develop a prototype informatics tool to help oncologists counsel patients with pancreatic cancer about their prognosis. The tool generated real-time prognostic information based on tumor type and stage, age, comorbidity status and lab tests. Our multidisciplinary team included embedded researchers, application developers, user experience experts, and an oncologist leader.This prototype succeeded in establishing proof of principle, but did not reach adoption into actual practice. In pilot testing, oncologists succeeded in generating prognostic information in real time. A few found it helpful in patient encounters, but all identified critical areas for further development before implementation. Generalizable lessons included the need to (1) include a wide range of potential use cases and stakeholders when selecting use cases for such tools; (2) develop talking points for clinicians to explain results from predictive tools to patients; (3) develop ways to reduce lag time between events and data availability; and (4) keep the options presented in the user interface very simple. This case demonstrates that embedded researchers can lead collaborations using EMR-derived data to create systems for real-time personalized patient counseling, and highlights challenges that such teams can anticipate.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.hjdsi.2020.100486</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1729-5426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-0764 |
ispartof | Healthcare : the journal of delivery science and innovation, 2021-06, Vol.8, p.100486-100486, Article 100486 |
issn | 2213-0764 2213-0772 |
language | eng |
recordid | cdi_proquest_miscellaneous_2545995317 |
source | Alma/SFX Local Collection |
subjects | Delivery of health care Electronic health records Organizational innovation Patient-centered care Word count: 2,999 |
title | A prognostic information system for real-time personalized care: Lessons for embedded researchers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prognostic%20information%20system%20for%20real-time%20personalized%20care:%20Lessons%20for%20embedded%20researchers&rft.jtitle=Healthcare%20:%20the%20journal%20of%20delivery%20science%20and%20innovation&rft.au=Lieu,%20Tracy%20A.&rft.date=2021-06&rft.volume=8&rft.spage=100486&rft.epage=100486&rft.pages=100486-100486&rft.artnum=100486&rft.issn=2213-0764&rft.eissn=2213-0772&rft_id=info:doi/10.1016/j.hjdsi.2020.100486&rft_dat=%3Cproquest_cross%3E2545995317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545995317&rft_id=info:pmid/&rft_els_id=S2213076420300853&rfr_iscdi=true |