Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects

Metal–polymer interfaces with different but well defined morphologies were prepared by evaporating noble metals (Au, Ag, Cu) onto chemically different polymers, i.e. bisphenol-trimethyl cyclohexane polycarbonate (TMC-PC), pyromellitic dianhydride-oxydianiline (PMDA-ODA) polyimide (PI), polystyrene (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2000, Vol.50 (1), p.465-471
Hauptverfasser: Zaporojtchenko, V, Strunskus, T, Behnke, K, Bechtolsheim, C.v, Thran, A, Faupel, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 1
container_start_page 465
container_title Microelectronic engineering
container_volume 50
creator Zaporojtchenko, V
Strunskus, T
Behnke, K
Bechtolsheim, C.v
Thran, A
Faupel, F
description Metal–polymer interfaces with different but well defined morphologies were prepared by evaporating noble metals (Au, Ag, Cu) onto chemically different polymers, i.e. bisphenol-trimethyl cyclohexane polycarbonate (TMC-PC), pyromellitic dianhydride-oxydianiline (PMDA-ODA) polyimide (PI), polystyrene (PS) and the low-k dielectric Teflon AF 1601. The interfaces were characterised using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The combination of these techniques allowed one to determine morphological parameters such as concentration and distribution of metal clusters at the surface and in the near-surface region. In addition, radiotracer measurements yielded exact metal condensation coefficients C and was used to determine the extent of diffusion of metal atoms into the polymers. First experiments on the macroscopic adhesion of Cu on TMC-PC showed that the initially low peel strength can be increased substantially by subsequent annealing above the polymer glass transition temperature, T g.
doi_str_mv 10.1016/S0167-9317(99)00316-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25457571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931799003160</els_id><sourcerecordid>25457571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-18939d446f291696a6afde06f3941db456939f0a62dfe7a23427e4c49a321e73</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVpEmTiRsR8QaCC92HY3oCkbapSUeYne_gG_okpjOiSzcJ4f_-c8hHyAGjp4wyefaUD1VqztSx1ieUciZLukFmbK54Wddyvklmv8g22Unplea3oPMZaW9C7GD0oS-CKzocof36-BxCu-wwFr4fMTqwmIqX5Tot8B2GEFeV8wy4doG9xand4BCSX80aIELGMaYC-iYnDu2Y9siWgzbh_s-9S55vrp-v7sqHx9v7q8uH0grOx5LNNdeNENJVmkktQYJrkErHtWDNi6hlzh0FWTUOFVRcVAqFFRp4xVDxXXK0HjvE8LbANJrOJ4ttCz2GRTJVLWpVK5bBeg3aGFKK6MwQfQdxaRg1k1qzUmsmb0Zrs1JraO4d_iyAZKF1EXrr01-50kKpCbtYY5j_-u4xmmT9JKvxMeswTfD_LPoGQaCP1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25457571</pqid></control><display><type>article</type><title>Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zaporojtchenko, V ; Strunskus, T ; Behnke, K ; Bechtolsheim, C.v ; Thran, A ; Faupel, F</creator><creatorcontrib>Zaporojtchenko, V ; Strunskus, T ; Behnke, K ; Bechtolsheim, C.v ; Thran, A ; Faupel, F</creatorcontrib><description>Metal–polymer interfaces with different but well defined morphologies were prepared by evaporating noble metals (Au, Ag, Cu) onto chemically different polymers, i.e. bisphenol-trimethyl cyclohexane polycarbonate (TMC-PC), pyromellitic dianhydride-oxydianiline (PMDA-ODA) polyimide (PI), polystyrene (PS) and the low-k dielectric Teflon AF 1601. The interfaces were characterised using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The combination of these techniques allowed one to determine morphological parameters such as concentration and distribution of metal clusters at the surface and in the near-surface region. In addition, radiotracer measurements yielded exact metal condensation coefficients C and was used to determine the extent of diffusion of metal atoms into the polymers. First experiments on the macroscopic adhesion of Cu on TMC-PC showed that the initially low peel strength can be increased substantially by subsequent annealing above the polymer glass transition temperature, T g.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/S0167-9317(99)00316-0</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adhesion ; Applied sciences ; Cluster density ; Condensation coefficient ; Electronics ; Exact sciences and technology ; Metal ; Microelectronic fabrication (materials and surfaces technology) ; Morphology ; Polymer ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Microelectronic engineering, 2000, Vol.50 (1), p.465-471</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-18939d446f291696a6afde06f3941db456939f0a62dfe7a23427e4c49a321e73</citedby><cites>FETCH-LOGICAL-c433t-18939d446f291696a6afde06f3941db456939f0a62dfe7a23427e4c49a321e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-9317(99)00316-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4024,4050,4051,23930,23931,25140,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1294770$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaporojtchenko, V</creatorcontrib><creatorcontrib>Strunskus, T</creatorcontrib><creatorcontrib>Behnke, K</creatorcontrib><creatorcontrib>Bechtolsheim, C.v</creatorcontrib><creatorcontrib>Thran, A</creatorcontrib><creatorcontrib>Faupel, F</creatorcontrib><title>Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects</title><title>Microelectronic engineering</title><description>Metal–polymer interfaces with different but well defined morphologies were prepared by evaporating noble metals (Au, Ag, Cu) onto chemically different polymers, i.e. bisphenol-trimethyl cyclohexane polycarbonate (TMC-PC), pyromellitic dianhydride-oxydianiline (PMDA-ODA) polyimide (PI), polystyrene (PS) and the low-k dielectric Teflon AF 1601. The interfaces were characterised using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The combination of these techniques allowed one to determine morphological parameters such as concentration and distribution of metal clusters at the surface and in the near-surface region. In addition, radiotracer measurements yielded exact metal condensation coefficients C and was used to determine the extent of diffusion of metal atoms into the polymers. First experiments on the macroscopic adhesion of Cu on TMC-PC showed that the initially low peel strength can be increased substantially by subsequent annealing above the polymer glass transition temperature, T g.</description><subject>Adhesion</subject><subject>Applied sciences</subject><subject>Cluster density</subject><subject>Condensation coefficient</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Metal</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Morphology</subject><subject>Polymer</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQehCRBfVpEmTiRsR8QaCC92HY3oCkbapSUeYne_gG_okpjOiSzcJ4f_-c8hHyAGjp4wyefaUD1VqztSx1ieUciZLukFmbK54Wddyvklmv8g22Unplea3oPMZaW9C7GD0oS-CKzocof36-BxCu-wwFr4fMTqwmIqX5Tot8B2GEFeV8wy4doG9xand4BCSX80aIELGMaYC-iYnDu2Y9siWgzbh_s-9S55vrp-v7sqHx9v7q8uH0grOx5LNNdeNENJVmkktQYJrkErHtWDNi6hlzh0FWTUOFVRcVAqFFRp4xVDxXXK0HjvE8LbANJrOJ4ttCz2GRTJVLWpVK5bBeg3aGFKK6MwQfQdxaRg1k1qzUmsmb0Zrs1JraO4d_iyAZKF1EXrr01-50kKpCbtYY5j_-u4xmmT9JKvxMeswTfD_LPoGQaCP1g</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Zaporojtchenko, V</creator><creator>Strunskus, T</creator><creator>Behnke, K</creator><creator>Bechtolsheim, C.v</creator><creator>Thran, A</creator><creator>Faupel, F</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2000</creationdate><title>Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects</title><author>Zaporojtchenko, V ; Strunskus, T ; Behnke, K ; Bechtolsheim, C.v ; Thran, A ; Faupel, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-18939d446f291696a6afde06f3941db456939f0a62dfe7a23427e4c49a321e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adhesion</topic><topic>Applied sciences</topic><topic>Cluster density</topic><topic>Condensation coefficient</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Metal</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Morphology</topic><topic>Polymer</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaporojtchenko, V</creatorcontrib><creatorcontrib>Strunskus, T</creatorcontrib><creatorcontrib>Behnke, K</creatorcontrib><creatorcontrib>Bechtolsheim, C.v</creatorcontrib><creatorcontrib>Thran, A</creatorcontrib><creatorcontrib>Faupel, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaporojtchenko, V</au><au>Strunskus, T</au><au>Behnke, K</au><au>Bechtolsheim, C.v</au><au>Thran, A</au><au>Faupel, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects</atitle><jtitle>Microelectronic engineering</jtitle><date>2000</date><risdate>2000</risdate><volume>50</volume><issue>1</issue><spage>465</spage><epage>471</epage><pages>465-471</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Metal–polymer interfaces with different but well defined morphologies were prepared by evaporating noble metals (Au, Ag, Cu) onto chemically different polymers, i.e. bisphenol-trimethyl cyclohexane polycarbonate (TMC-PC), pyromellitic dianhydride-oxydianiline (PMDA-ODA) polyimide (PI), polystyrene (PS) and the low-k dielectric Teflon AF 1601. The interfaces were characterised using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The combination of these techniques allowed one to determine morphological parameters such as concentration and distribution of metal clusters at the surface and in the near-surface region. In addition, radiotracer measurements yielded exact metal condensation coefficients C and was used to determine the extent of diffusion of metal atoms into the polymers. First experiments on the macroscopic adhesion of Cu on TMC-PC showed that the initially low peel strength can be increased substantially by subsequent annealing above the polymer glass transition temperature, T g.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9317(99)00316-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2000, Vol.50 (1), p.465-471
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_25457571
source Access via ScienceDirect (Elsevier)
subjects Adhesion
Applied sciences
Cluster density
Condensation coefficient
Electronics
Exact sciences and technology
Metal
Microelectronic fabrication (materials and surfaces technology)
Morphology
Polymer
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Formation of metal–polymer interfaces by metal evaporation: influence of deposition parameters and defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20metal%E2%80%93polymer%20interfaces%20by%20metal%20evaporation:%20influence%20of%20deposition%20parameters%20and%20defects&rft.jtitle=Microelectronic%20engineering&rft.au=Zaporojtchenko,%20V&rft.date=2000&rft.volume=50&rft.issue=1&rft.spage=465&rft.epage=471&rft.pages=465-471&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/S0167-9317(99)00316-0&rft_dat=%3Cproquest_cross%3E25457571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25457571&rft_id=info:pmid/&rft_els_id=S0167931799003160&rfr_iscdi=true