Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer
Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles f...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2101155-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2101155 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Song, Rundi Li, Tianliang Ye, Jiayi Sun, Fang Hou, Bo Saeed, Madiha Gao, Jing Wang, Yingjie Zhu, Qiwen Xu, Zhiai Yu, Haijun |
description | Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.
Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis. |
doi_str_mv | 10.1002/adma.202101155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545602662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545602662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhq2qVVkoV47IUi9cdhnbazs-prulRaJwKefIcRwwSuLUdkC58Qh9Rp6kRktB6qWnkUbffPo1P0JHBFYEgJ7qptcrCpQAIZy_QwvCKVmuQfH3aAGK8aUS62IP7cd4BwBKgPiI9tiaSOAFWaCb0rjGpfnp8XdpkrvXSdedxdt50L0z-FIPftQhOdPZiL94H5MbbvCZDcGPyec93tiuw1ur0y1ufcDnfT8NPt3aoMcZ-xZv9GBs-IQ-tLqL9vBlHqDrs68_N9-XF1ffzjflxdIwmcMyXbS0ZoJLRgSTWoGtLa0pUYJRaSSVqqFC2xZITRgUuhCmlqwhAlpghWQH6GTnHYP_NdmYqt5FkyPqwfopVpSvuQAqBM3o53_QOz-FIafLFJdFQRRTmVrtKBN8jMG21Rhcr8NcEaieK6ieK6heK8gHxy_aqe5t84r__XkG1A54cJ2d_6Oryu2P8k3-B349kn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557881939</pqid></control><display><type>article</type><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</creator><creatorcontrib>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</creatorcontrib><description>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.
Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101155</identifier><identifier>PMID: 34170581</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Block copolymers ; Cancer ; cancer immunotherapy ; Cell death ; Cell Line, Tumor ; Chemical bonds ; Covalent bonds ; ferroptosis ; Ferroptosis - drug effects ; Glutathione ; Humans ; Hydrogen-Ion Concentration ; immune resistance ; immunogenic cell death ; Immunotherapy ; Interferon ; Lymphocytes ; Materials science ; Mice ; Nanoparticles ; Nanoparticles - chemistry ; Peroxidase ; Photochemotherapy - methods ; Photodynamic therapy ; Protonation ; T lymphocytes ; Tumors</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101155-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</citedby><cites>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</cites><orcidid>0000-0002-3398-0880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34170581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Rundi</creatorcontrib><creatorcontrib>Li, Tianliang</creatorcontrib><creatorcontrib>Ye, Jiayi</creatorcontrib><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><creatorcontrib>Saeed, Madiha</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Wang, Yingjie</creatorcontrib><creatorcontrib>Zhu, Qiwen</creatorcontrib><creatorcontrib>Xu, Zhiai</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.
Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</description><subject>Animals</subject><subject>Block copolymers</subject><subject>Cancer</subject><subject>cancer immunotherapy</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>ferroptosis</subject><subject>Ferroptosis - drug effects</subject><subject>Glutathione</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>immune resistance</subject><subject>immunogenic cell death</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Lymphocytes</subject><subject>Materials science</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Peroxidase</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>Protonation</subject><subject>T lymphocytes</subject><subject>Tumors</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFO3DAQhq2qVVkoV47IUi9cdhnbazs-prulRaJwKefIcRwwSuLUdkC58Qh9Rp6kRktB6qWnkUbffPo1P0JHBFYEgJ7qptcrCpQAIZy_QwvCKVmuQfH3aAGK8aUS62IP7cd4BwBKgPiI9tiaSOAFWaCb0rjGpfnp8XdpkrvXSdedxdt50L0z-FIPftQhOdPZiL94H5MbbvCZDcGPyec93tiuw1ur0y1ufcDnfT8NPt3aoMcZ-xZv9GBs-IQ-tLqL9vBlHqDrs68_N9-XF1ffzjflxdIwmcMyXbS0ZoJLRgSTWoGtLa0pUYJRaSSVqqFC2xZITRgUuhCmlqwhAlpghWQH6GTnHYP_NdmYqt5FkyPqwfopVpSvuQAqBM3o53_QOz-FIafLFJdFQRRTmVrtKBN8jMG21Rhcr8NcEaieK6ieK6heK8gHxy_aqe5t84r__XkG1A54cJ2d_6Oryu2P8k3-B349kn8</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Song, Rundi</creator><creator>Li, Tianliang</creator><creator>Ye, Jiayi</creator><creator>Sun, Fang</creator><creator>Hou, Bo</creator><creator>Saeed, Madiha</creator><creator>Gao, Jing</creator><creator>Wang, Yingjie</creator><creator>Zhu, Qiwen</creator><creator>Xu, Zhiai</creator><creator>Yu, Haijun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3398-0880</orcidid></search><sort><creationdate>20210801</creationdate><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><author>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Block copolymers</topic><topic>Cancer</topic><topic>cancer immunotherapy</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>ferroptosis</topic><topic>Ferroptosis - drug effects</topic><topic>Glutathione</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>immune resistance</topic><topic>immunogenic cell death</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Lymphocytes</topic><topic>Materials science</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Peroxidase</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>Protonation</topic><topic>T lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Rundi</creatorcontrib><creatorcontrib>Li, Tianliang</creatorcontrib><creatorcontrib>Ye, Jiayi</creatorcontrib><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><creatorcontrib>Saeed, Madiha</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Wang, Yingjie</creatorcontrib><creatorcontrib>Zhu, Qiwen</creatorcontrib><creatorcontrib>Xu, Zhiai</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Rundi</au><au>Li, Tianliang</au><au>Ye, Jiayi</au><au>Sun, Fang</au><au>Hou, Bo</au><au>Saeed, Madiha</au><au>Gao, Jing</au><au>Wang, Yingjie</au><au>Zhu, Qiwen</au><au>Xu, Zhiai</au><au>Yu, Haijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2101155</spage><epage>n/a</epage><pages>e2101155-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy.
Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34170581</pmid><doi>10.1002/adma.202101155</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3398-0880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101155-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2545602662 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Block copolymers Cancer cancer immunotherapy Cell death Cell Line, Tumor Chemical bonds Covalent bonds ferroptosis Ferroptosis - drug effects Glutathione Humans Hydrogen-Ion Concentration immune resistance immunogenic cell death Immunotherapy Interferon Lymphocytes Materials science Mice Nanoparticles Nanoparticles - chemistry Peroxidase Photochemotherapy - methods Photodynamic therapy Protonation T lymphocytes Tumors |
title | Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidity%E2%80%90Activatable%20Dynamic%20Nanoparticles%20Boosting%20Ferroptotic%20Cell%20Death%20for%20Immunotherapy%20of%20Cancer&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Rundi&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2101155&rft.epage=n/a&rft.pages=e2101155-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101155&rft_dat=%3Cproquest_cross%3E2545602662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557881939&rft_id=info:pmid/34170581&rfr_iscdi=true |