Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer

Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2101155-n/a
Hauptverfasser: Song, Rundi, Li, Tianliang, Ye, Jiayi, Sun, Fang, Hou, Bo, Saeed, Madiha, Gao, Jing, Wang, Yingjie, Zhu, Qiwen, Xu, Zhiai, Yu, Haijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2101155
container_title Advanced materials (Weinheim)
container_volume 33
creator Song, Rundi
Li, Tianliang
Ye, Jiayi
Sun, Fang
Hou, Bo
Saeed, Madiha
Gao, Jing
Wang, Yingjie
Zhu, Qiwen
Xu, Zhiai
Yu, Haijun
description Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy. Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.
doi_str_mv 10.1002/adma.202101155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545602662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545602662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</originalsourceid><addsrcrecordid>eNqFkcFO3DAQhq2qVVkoV47IUi9cdhnbazs-prulRaJwKefIcRwwSuLUdkC58Qh9Rp6kRktB6qWnkUbffPo1P0JHBFYEgJ7qptcrCpQAIZy_QwvCKVmuQfH3aAGK8aUS62IP7cd4BwBKgPiI9tiaSOAFWaCb0rjGpfnp8XdpkrvXSdedxdt50L0z-FIPftQhOdPZiL94H5MbbvCZDcGPyec93tiuw1ur0y1ufcDnfT8NPt3aoMcZ-xZv9GBs-IQ-tLqL9vBlHqDrs68_N9-XF1ffzjflxdIwmcMyXbS0ZoJLRgSTWoGtLa0pUYJRaSSVqqFC2xZITRgUuhCmlqwhAlpghWQH6GTnHYP_NdmYqt5FkyPqwfopVpSvuQAqBM3o53_QOz-FIafLFJdFQRRTmVrtKBN8jMG21Rhcr8NcEaieK6ieK6heK8gHxy_aqe5t84r__XkG1A54cJ2d_6Oryu2P8k3-B349kn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557881939</pqid></control><display><type>article</type><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</creator><creatorcontrib>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</creatorcontrib><description>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy. Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101155</identifier><identifier>PMID: 34170581</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Block copolymers ; Cancer ; cancer immunotherapy ; Cell death ; Cell Line, Tumor ; Chemical bonds ; Covalent bonds ; ferroptosis ; Ferroptosis - drug effects ; Glutathione ; Humans ; Hydrogen-Ion Concentration ; immune resistance ; immunogenic cell death ; Immunotherapy ; Interferon ; Lymphocytes ; Materials science ; Mice ; Nanoparticles ; Nanoparticles - chemistry ; Peroxidase ; Photochemotherapy - methods ; Photodynamic therapy ; Protonation ; T lymphocytes ; Tumors</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101155-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</citedby><cites>FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</cites><orcidid>0000-0002-3398-0880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34170581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Rundi</creatorcontrib><creatorcontrib>Li, Tianliang</creatorcontrib><creatorcontrib>Ye, Jiayi</creatorcontrib><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><creatorcontrib>Saeed, Madiha</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Wang, Yingjie</creatorcontrib><creatorcontrib>Zhu, Qiwen</creatorcontrib><creatorcontrib>Xu, Zhiai</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy. Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</description><subject>Animals</subject><subject>Block copolymers</subject><subject>Cancer</subject><subject>cancer immunotherapy</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>ferroptosis</subject><subject>Ferroptosis - drug effects</subject><subject>Glutathione</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>immune resistance</subject><subject>immunogenic cell death</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Lymphocytes</subject><subject>Materials science</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Peroxidase</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>Protonation</subject><subject>T lymphocytes</subject><subject>Tumors</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFO3DAQhq2qVVkoV47IUi9cdhnbazs-prulRaJwKefIcRwwSuLUdkC58Qh9Rp6kRktB6qWnkUbffPo1P0JHBFYEgJ7qptcrCpQAIZy_QwvCKVmuQfH3aAGK8aUS62IP7cd4BwBKgPiI9tiaSOAFWaCb0rjGpfnp8XdpkrvXSdedxdt50L0z-FIPftQhOdPZiL94H5MbbvCZDcGPyec93tiuw1ur0y1ufcDnfT8NPt3aoMcZ-xZv9GBs-IQ-tLqL9vBlHqDrs68_N9-XF1ffzjflxdIwmcMyXbS0ZoJLRgSTWoGtLa0pUYJRaSSVqqFC2xZITRgUuhCmlqwhAlpghWQH6GTnHYP_NdmYqt5FkyPqwfopVpSvuQAqBM3o53_QOz-FIafLFJdFQRRTmVrtKBN8jMG21Rhcr8NcEaieK6ieK6heK8gHxy_aqe5t84r__XkG1A54cJ2d_6Oryu2P8k3-B349kn8</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Song, Rundi</creator><creator>Li, Tianliang</creator><creator>Ye, Jiayi</creator><creator>Sun, Fang</creator><creator>Hou, Bo</creator><creator>Saeed, Madiha</creator><creator>Gao, Jing</creator><creator>Wang, Yingjie</creator><creator>Zhu, Qiwen</creator><creator>Xu, Zhiai</creator><creator>Yu, Haijun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3398-0880</orcidid></search><sort><creationdate>20210801</creationdate><title>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</title><author>Song, Rundi ; Li, Tianliang ; Ye, Jiayi ; Sun, Fang ; Hou, Bo ; Saeed, Madiha ; Gao, Jing ; Wang, Yingjie ; Zhu, Qiwen ; Xu, Zhiai ; Yu, Haijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-3a8f2b365731637a90ebe2b2196327c7279d26aef01b1308a86cb73d160f03873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Block copolymers</topic><topic>Cancer</topic><topic>cancer immunotherapy</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>ferroptosis</topic><topic>Ferroptosis - drug effects</topic><topic>Glutathione</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>immune resistance</topic><topic>immunogenic cell death</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Lymphocytes</topic><topic>Materials science</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Peroxidase</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>Protonation</topic><topic>T lymphocytes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Rundi</creatorcontrib><creatorcontrib>Li, Tianliang</creatorcontrib><creatorcontrib>Ye, Jiayi</creatorcontrib><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Hou, Bo</creatorcontrib><creatorcontrib>Saeed, Madiha</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><creatorcontrib>Wang, Yingjie</creatorcontrib><creatorcontrib>Zhu, Qiwen</creatorcontrib><creatorcontrib>Xu, Zhiai</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Rundi</au><au>Li, Tianliang</au><au>Ye, Jiayi</au><au>Sun, Fang</au><au>Hou, Bo</au><au>Saeed, Madiha</au><au>Gao, Jing</au><au>Wang, Yingjie</au><au>Zhu, Qiwen</au><au>Xu, Zhiai</au><au>Yu, Haijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2101155</spage><epage>n/a</epage><pages>e2101155-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Immunotherapy shows promising therapeutic potential for long‐term tumor regression. However, current cancer immunotherapy displays a low response rate due to insufficient immunogenicity of the tumor cells. To address these challenges, herein, intracellular‐acidity‐activatable dynamic nanoparticles for eliciting immunogenicity by inducing ferroptosis of the tumor cells are engineered. The nanoparticles are engineered by integrating an ionizable block copolymer and acid‐liable phenylboronate ester (PBE) dynamic covalent bonds for tumor‐specific delivery of the ferroptosis inducer, a glutathione peroxidase 4 inhibitor RSL‐3. The nanoparticles can stably encapsulate RSL‐3 inside the hydrophobic core via π–π stacking interaction with the PBE groups at neutral pH (pH = 7.4), while releasing the payload in the endocytic vesicles (pH = 5.8–6.2) by acidity‐triggered cleavage of the PBE dynamic covalent bonds. Furthermore, the nanoparticles can perform acid‐activatable photodynamic therapy by protonation of the ionizable core, and significantly recruit tumor‐infiltrating T lymphocytes for interferon gamma secretion, and thus sensitize the tumor cells to RSL‐3‐inducible ferroptosis. The combination of nanoparticle‐induced ferroptosis and blockade of programmed death ligand 1 efficiently inhibits growth of B16‐F10 melanoma tumor and lung metastasis of 4T1 breast tumors, suggesting the promising potential of ferroptosis induction for promoting cancer immunotherapy. Intracellular‐acidity‐activatable nanoparticles integrating dynamic covalent bonds are developed for tumor‐specific delivery of glutathione peroxidase 4 (GPX4) inhibitor RSL‐3 and photodynamic therapy (PDT). Nanoparticle‐based GPX4 inhibition and PDT significantly promote the ferroptotic death of tumor cells and activate the T‐cell immune response for inhibiting tumor growth and suppressing distant metastasis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34170581</pmid><doi>10.1002/adma.202101155</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3398-0880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101155-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2545602662
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Block copolymers
Cancer
cancer immunotherapy
Cell death
Cell Line, Tumor
Chemical bonds
Covalent bonds
ferroptosis
Ferroptosis - drug effects
Glutathione
Humans
Hydrogen-Ion Concentration
immune resistance
immunogenic cell death
Immunotherapy
Interferon
Lymphocytes
Materials science
Mice
Nanoparticles
Nanoparticles - chemistry
Peroxidase
Photochemotherapy - methods
Photodynamic therapy
Protonation
T lymphocytes
Tumors
title Acidity‐Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidity%E2%80%90Activatable%20Dynamic%20Nanoparticles%20Boosting%20Ferroptotic%20Cell%20Death%20for%20Immunotherapy%20of%20Cancer&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Rundi&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2101155&rft.epage=n/a&rft.pages=e2101155-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101155&rft_dat=%3Cproquest_cross%3E2545602662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557881939&rft_id=info:pmid/34170581&rfr_iscdi=true