Real-time predictions of seabird distribution improve oil spill risk assessments

Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2021-09, Vol.170, p.112625-112625, Article 112625
Hauptverfasser: Skov, Henrik, Theophilus, Teo Zhi En, Heinänen, Stefan, Fauchald, Per, Madsen, Mads, Mortensen, Jonas Brandi, Uhrenholdt, Thomas, Thomsen, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112625
container_issue
container_start_page 112625
container_title Marine pollution bulletin
container_volume 170
creator Skov, Henrik
Theophilus, Teo Zhi En
Heinänen, Stefan
Fauchald, Per
Madsen, Mads
Mortensen, Jonas Brandi
Uhrenholdt, Thomas
Thomsen, Frank
description Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the distributional dynamics and patchiness of seabirds relevant to risk assessments related to oil spills. This paper describes a dynamic modelling framework solution for prediction of fine-scale densities and movements of seabirds in close-to-real time using fully integrated 3-D hydrodynamic models, dynamic habitat suitability models and agent-based models. The modelling framework has been developed and validated for the swimming migration of Brünnich's Guillemot Uria lomvia in the Barents Sea. The results document that the distributional dynamics of Brünnich's Guillemot and other seabird species to a large degree can be simulated with in-situ state variables and patterns reflecting the physical meteorology and oceanography and habitat suitability. •Oil risk assessments are impeded by static and coarse-scale models for seabirds.•Dynamic modelling frameworks can provide high-resolution information.•Solution integrates 3-D hydrodynamic, habitat suitability, and agent-based models.•Validated for the swimming migration of Brünnich's Guillemot in the Barents Sea
doi_str_mv 10.1016/j.marpolbul.2021.112625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545596244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X21006597</els_id><sourcerecordid>2545596244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e2711695266f97e719e2c7b65a9332a439a62add327ec7e751b097b2469419983</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF6ewYAbNx1zaROzFPEGgiIK7kKanoGMaVNzWsG3N8OICzeuzuL_zu0j5ISzJWdcna-Xvctjiu0cl4IJvuRcKNHskAW_0KaSUsldsmBMNJUU6m2fHCCuGWNaaL4gT8_gYjWFHuiYoQt-CmlAmlYUwbUhd7QLOOXQzpuAhn7M6RNoCpHiGGKkOeA7dYiA2MMw4RHZW7mIcPxTD8nrzfXL1V318Hh7f3X5UHmp1VRB2c6VaYRSK6NBcwPC61Y1zkgpXC2NU8J1nRQafMkb3jKjW1ErU3NjLuQhOdvOLQd9zICT7QN6iNENkGa0oqmbxihR1wU9_YOu05yHcl2hlFGGKWUKpbeUzwkxw8qOORS1X5YzuzFt1_bXtN2YtlvTpfNy2wnl388A2aIPMPiiM4OfbJfCvzO-AbM8it8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569690669</pqid></control><display><type>article</type><title>Real-time predictions of seabird distribution improve oil spill risk assessments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Skov, Henrik ; Theophilus, Teo Zhi En ; Heinänen, Stefan ; Fauchald, Per ; Madsen, Mads ; Mortensen, Jonas Brandi ; Uhrenholdt, Thomas ; Thomsen, Frank</creator><creatorcontrib>Skov, Henrik ; Theophilus, Teo Zhi En ; Heinänen, Stefan ; Fauchald, Per ; Madsen, Mads ; Mortensen, Jonas Brandi ; Uhrenholdt, Thomas ; Thomsen, Frank</creatorcontrib><description>Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the distributional dynamics and patchiness of seabirds relevant to risk assessments related to oil spills. This paper describes a dynamic modelling framework solution for prediction of fine-scale densities and movements of seabirds in close-to-real time using fully integrated 3-D hydrodynamic models, dynamic habitat suitability models and agent-based models. The modelling framework has been developed and validated for the swimming migration of Brünnich's Guillemot Uria lomvia in the Barents Sea. The results document that the distributional dynamics of Brünnich's Guillemot and other seabird species to a large degree can be simulated with in-situ state variables and patterns reflecting the physical meteorology and oceanography and habitat suitability. •Oil risk assessments are impeded by static and coarse-scale models for seabirds.•Dynamic modelling frameworks can provide high-resolution information.•Solution integrates 3-D hydrodynamic, habitat suitability, and agent-based models.•Validated for the swimming migration of Brünnich's Guillemot in the Barents Sea</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2021.112625</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agent-based modelling ; Aquatic birds ; Arctic ; Barents Sea ; Brünnich's Guillemot ; Distribution ; Dynamic habitat modelling ; Dynamic models ; Dynamics ; Fishery oceanography ; Habitats ; Hydrodynamics ; Mathematical models ; Meteorology ; Migrations ; Modelling ; Oceanography ; Oil spill risk assessments ; Oil spills ; Patchiness ; Physical oceanography ; Polar environments ; Real time ; Risk assessment ; Seabirds ; Statistical analysis ; Statistical models ; Surveying ; Swimming ; Three dimensional models</subject><ispartof>Marine pollution bulletin, 2021-09, Vol.170, p.112625-112625, Article 112625</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e2711695266f97e719e2c7b65a9332a439a62add327ec7e751b097b2469419983</citedby><cites>FETCH-LOGICAL-c376t-e2711695266f97e719e2c7b65a9332a439a62add327ec7e751b097b2469419983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpolbul.2021.112625$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Theophilus, Teo Zhi En</creatorcontrib><creatorcontrib>Heinänen, Stefan</creatorcontrib><creatorcontrib>Fauchald, Per</creatorcontrib><creatorcontrib>Madsen, Mads</creatorcontrib><creatorcontrib>Mortensen, Jonas Brandi</creatorcontrib><creatorcontrib>Uhrenholdt, Thomas</creatorcontrib><creatorcontrib>Thomsen, Frank</creatorcontrib><title>Real-time predictions of seabird distribution improve oil spill risk assessments</title><title>Marine pollution bulletin</title><description>Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the distributional dynamics and patchiness of seabirds relevant to risk assessments related to oil spills. This paper describes a dynamic modelling framework solution for prediction of fine-scale densities and movements of seabirds in close-to-real time using fully integrated 3-D hydrodynamic models, dynamic habitat suitability models and agent-based models. The modelling framework has been developed and validated for the swimming migration of Brünnich's Guillemot Uria lomvia in the Barents Sea. The results document that the distributional dynamics of Brünnich's Guillemot and other seabird species to a large degree can be simulated with in-situ state variables and patterns reflecting the physical meteorology and oceanography and habitat suitability. •Oil risk assessments are impeded by static and coarse-scale models for seabirds.•Dynamic modelling frameworks can provide high-resolution information.•Solution integrates 3-D hydrodynamic, habitat suitability, and agent-based models.•Validated for the swimming migration of Brünnich's Guillemot in the Barents Sea</description><subject>Agent-based modelling</subject><subject>Aquatic birds</subject><subject>Arctic</subject><subject>Barents Sea</subject><subject>Brünnich's Guillemot</subject><subject>Distribution</subject><subject>Dynamic habitat modelling</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Fishery oceanography</subject><subject>Habitats</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Migrations</subject><subject>Modelling</subject><subject>Oceanography</subject><subject>Oil spill risk assessments</subject><subject>Oil spills</subject><subject>Patchiness</subject><subject>Physical oceanography</subject><subject>Polar environments</subject><subject>Real time</subject><subject>Risk assessment</subject><subject>Seabirds</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Surveying</subject><subject>Swimming</subject><subject>Three dimensional models</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF6ewYAbNx1zaROzFPEGgiIK7kKanoGMaVNzWsG3N8OICzeuzuL_zu0j5ISzJWdcna-Xvctjiu0cl4IJvuRcKNHskAW_0KaSUsldsmBMNJUU6m2fHCCuGWNaaL4gT8_gYjWFHuiYoQt-CmlAmlYUwbUhd7QLOOXQzpuAhn7M6RNoCpHiGGKkOeA7dYiA2MMw4RHZW7mIcPxTD8nrzfXL1V318Hh7f3X5UHmp1VRB2c6VaYRSK6NBcwPC61Y1zkgpXC2NU8J1nRQafMkb3jKjW1ErU3NjLuQhOdvOLQd9zICT7QN6iNENkGa0oqmbxihR1wU9_YOu05yHcl2hlFGGKWUKpbeUzwkxw8qOORS1X5YzuzFt1_bXtN2YtlvTpfNy2wnl388A2aIPMPiiM4OfbJfCvzO-AbM8it8</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Skov, Henrik</creator><creator>Theophilus, Teo Zhi En</creator><creator>Heinänen, Stefan</creator><creator>Fauchald, Per</creator><creator>Madsen, Mads</creator><creator>Mortensen, Jonas Brandi</creator><creator>Uhrenholdt, Thomas</creator><creator>Thomsen, Frank</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202109</creationdate><title>Real-time predictions of seabird distribution improve oil spill risk assessments</title><author>Skov, Henrik ; Theophilus, Teo Zhi En ; Heinänen, Stefan ; Fauchald, Per ; Madsen, Mads ; Mortensen, Jonas Brandi ; Uhrenholdt, Thomas ; Thomsen, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e2711695266f97e719e2c7b65a9332a439a62add327ec7e751b097b2469419983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agent-based modelling</topic><topic>Aquatic birds</topic><topic>Arctic</topic><topic>Barents Sea</topic><topic>Brünnich's Guillemot</topic><topic>Distribution</topic><topic>Dynamic habitat modelling</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Fishery oceanography</topic><topic>Habitats</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Migrations</topic><topic>Modelling</topic><topic>Oceanography</topic><topic>Oil spill risk assessments</topic><topic>Oil spills</topic><topic>Patchiness</topic><topic>Physical oceanography</topic><topic>Polar environments</topic><topic>Real time</topic><topic>Risk assessment</topic><topic>Seabirds</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Surveying</topic><topic>Swimming</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skov, Henrik</creatorcontrib><creatorcontrib>Theophilus, Teo Zhi En</creatorcontrib><creatorcontrib>Heinänen, Stefan</creatorcontrib><creatorcontrib>Fauchald, Per</creatorcontrib><creatorcontrib>Madsen, Mads</creatorcontrib><creatorcontrib>Mortensen, Jonas Brandi</creatorcontrib><creatorcontrib>Uhrenholdt, Thomas</creatorcontrib><creatorcontrib>Thomsen, Frank</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skov, Henrik</au><au>Theophilus, Teo Zhi En</au><au>Heinänen, Stefan</au><au>Fauchald, Per</au><au>Madsen, Mads</au><au>Mortensen, Jonas Brandi</au><au>Uhrenholdt, Thomas</au><au>Thomsen, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time predictions of seabird distribution improve oil spill risk assessments</atitle><jtitle>Marine pollution bulletin</jtitle><date>2021-09</date><risdate>2021</risdate><volume>170</volume><spage>112625</spage><epage>112625</epage><pages>112625-112625</pages><artnum>112625</artnum><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the distributional dynamics and patchiness of seabirds relevant to risk assessments related to oil spills. This paper describes a dynamic modelling framework solution for prediction of fine-scale densities and movements of seabirds in close-to-real time using fully integrated 3-D hydrodynamic models, dynamic habitat suitability models and agent-based models. The modelling framework has been developed and validated for the swimming migration of Brünnich's Guillemot Uria lomvia in the Barents Sea. The results document that the distributional dynamics of Brünnich's Guillemot and other seabird species to a large degree can be simulated with in-situ state variables and patterns reflecting the physical meteorology and oceanography and habitat suitability. •Oil risk assessments are impeded by static and coarse-scale models for seabirds.•Dynamic modelling frameworks can provide high-resolution information.•Solution integrates 3-D hydrodynamic, habitat suitability, and agent-based models.•Validated for the swimming migration of Brünnich's Guillemot in the Barents Sea</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marpolbul.2021.112625</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2021-09, Vol.170, p.112625-112625, Article 112625
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_2545596244
source Access via ScienceDirect (Elsevier)
subjects Agent-based modelling
Aquatic birds
Arctic
Barents Sea
Brünnich's Guillemot
Distribution
Dynamic habitat modelling
Dynamic models
Dynamics
Fishery oceanography
Habitats
Hydrodynamics
Mathematical models
Meteorology
Migrations
Modelling
Oceanography
Oil spill risk assessments
Oil spills
Patchiness
Physical oceanography
Polar environments
Real time
Risk assessment
Seabirds
Statistical analysis
Statistical models
Surveying
Swimming
Three dimensional models
title Real-time predictions of seabird distribution improve oil spill risk assessments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20predictions%20of%20seabird%20distribution%20improve%20oil%20spill%20risk%20assessments&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Skov,%20Henrik&rft.date=2021-09&rft.volume=170&rft.spage=112625&rft.epage=112625&rft.pages=112625-112625&rft.artnum=112625&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2021.112625&rft_dat=%3Cproquest_cross%3E2545596244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569690669&rft_id=info:pmid/&rft_els_id=S0025326X21006597&rfr_iscdi=true