Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance

Cohesin loader nipped‐B‐like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2021-12, Vol.236 (12), p.8208-8225
Hauptverfasser: Gu, Weihuai, Wang, Lihong, Gu, Renjie, Ouyang, Huiya, Bao, Baicheng, Zheng, Liwei, Xu, Baoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8225
container_issue 12
container_start_page 8208
container_title Journal of cellular physiology
container_volume 236
creator Gu, Weihuai
Wang, Lihong
Gu, Renjie
Ouyang, Huiya
Bao, Baicheng
Zheng, Liwei
Xu, Baoshan
description Cohesin loader nipped‐B‐like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl‐a Cas9‐knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl‐depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion‐induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP‐Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis‐regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS. Nipbl deficiency triggers ISR accompanied by dysregulated ribosome biogenesis and reduced protein translation, nucleolar aberration, defective growth, and differentiation of embryonic osteoblast precursors. Such cellular stress causes poor cell viability, apoptosis, increasing DNA damage (γH2ax and 8‐oxog), and cell senescence (senescence‐associated galactosidase activity), respectively. Osteogenic differentiation was also perturbed by Nipbl haploinsufficiency, associated with reduced alkaline phosphatase (ALP) activity and mineralization capacity, and misregulation of osteoge
doi_str_mv 10.1002/jcp.30491
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545594175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609239522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-e16f4d005385e347a48333f6526fdd46e2c342d1733f6d9d996e33834af7bee13</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiq4fB_-ABLzoobtJJ2k3R1m_EfSgN6Fkkylm6TY1aZH992Zd9SB4Gsg8vGReQo45G3PG8snCdGNgQvEtMuJMlZkoZL5NRmnHMyUF3yP7MS4YY0oB7JI9ELxkjPMReb3EGk0fqa-p8W8YXUsbry0G2qC2tPd07lukdhW7RkenqY7RG6d7tPTD9W-0D7qNJriud77VDbUu9kOY69bgIdmpdRPx6HsekJfrq-fZbfbweHM3u3jIDEjgGfKiFpYxCVOJIEotpgBQpxuK2lpRYG5A5JaX60errFIFAkxB6LqcI3I4IGeb3C749wFjXy1dNNg0ukU_xCqXQkqVbpaJnv6hCz-E9O-kCqZyUDLPkzrfKBN8jAHrqgtuqcOq4qxaV16lyquvypM9-U4c5ku0v_Kn4wQmG_DhGlz9n1Tdz542kZ8UOYnz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609239522</pqid></control><display><type>article</type><title>Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gu, Weihuai ; Wang, Lihong ; Gu, Renjie ; Ouyang, Huiya ; Bao, Baicheng ; Zheng, Liwei ; Xu, Baoshan</creator><creatorcontrib>Gu, Weihuai ; Wang, Lihong ; Gu, Renjie ; Ouyang, Huiya ; Bao, Baicheng ; Zheng, Liwei ; Xu, Baoshan</creatorcontrib><description>Cohesin loader nipped‐B‐like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl‐a Cas9‐knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl‐depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion‐induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP‐Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis‐regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS. Nipbl deficiency triggers ISR accompanied by dysregulated ribosome biogenesis and reduced protein translation, nucleolar aberration, defective growth, and differentiation of embryonic osteoblast precursors. Such cellular stress causes poor cell viability, apoptosis, increasing DNA damage (γH2ax and 8‐oxog), and cell senescence (senescence‐associated galactosidase activity), respectively. Osteogenic differentiation was also perturbed by Nipbl haploinsufficiency, associated with reduced alkaline phosphatase (ALP) activity and mineralization capacity, and misregulation of osteogenic genes (Alp, Col1a1, Runx2, and Osterix) and some osteogenesis‐regulatory signaling (ERK/MAPK, EIF2 signaling, RhoA signaling, and Rho Family GTPases). Excitedly, ISRIB, a first bona fide ISR inhibitor, partially alleviated some defects in osteogenic differentiation and growth retardation upon Nipbl haploinsufficiency.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30491</identifier><identifier>PMID: 34170011</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Apoptosis ; Biomedical materials ; Bone Diseases, Developmental - genetics ; Bone Diseases, Developmental - metabolism ; Bone dysplasia ; Cartilage ; Cell cycle ; Cell differentiation ; Cell growth ; Cell proliferation ; Cell survival ; cellular senescence ; Cellular stress response ; Chromosome Segregation - genetics ; Cohesin ; Damage accumulation ; De Lange syndrome ; De Lange Syndrome - genetics ; De Lange Syndrome - metabolism ; Defects ; Depletion ; Differentiation (biology) ; DNA damage ; Embryo fibroblasts ; Evolution ; Fibrillarin ; Fibroblasts ; Fibroblasts - metabolism ; Genes ; Glial stem cells ; Heterozygote ; integrated stress response (ISR) ; Loaders ; Mutation ; Mutation - genetics ; Neural crest ; Neural stem cells ; Nipbl ; Nucleoli ; Osteoblastogenesis ; Osteoblasts ; Osteogenesis ; Osteogenesis - genetics ; Osteoprogenitor cells ; Phenotype ; Precursors ; Proteins ; rRNA ; Senescence ; Skeleton ; skeleton development ; Survival ; Transcription ; Transcription, Genetic - genetics ; Zebrafish ; Zebrafish - genetics</subject><ispartof>Journal of cellular physiology, 2021-12, Vol.236 (12), p.8208-8225</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-e16f4d005385e347a48333f6526fdd46e2c342d1733f6d9d996e33834af7bee13</citedby><cites>FETCH-LOGICAL-c3531-e16f4d005385e347a48333f6526fdd46e2c342d1733f6d9d996e33834af7bee13</cites><orcidid>0000-0001-8902-1243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30491$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30491$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34170011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Weihuai</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Gu, Renjie</creatorcontrib><creatorcontrib>Ouyang, Huiya</creatorcontrib><creatorcontrib>Bao, Baicheng</creatorcontrib><creatorcontrib>Zheng, Liwei</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><title>Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Cohesin loader nipped‐B‐like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl‐a Cas9‐knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl‐depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion‐induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP‐Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis‐regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS. Nipbl deficiency triggers ISR accompanied by dysregulated ribosome biogenesis and reduced protein translation, nucleolar aberration, defective growth, and differentiation of embryonic osteoblast precursors. Such cellular stress causes poor cell viability, apoptosis, increasing DNA damage (γH2ax and 8‐oxog), and cell senescence (senescence‐associated galactosidase activity), respectively. Osteogenic differentiation was also perturbed by Nipbl haploinsufficiency, associated with reduced alkaline phosphatase (ALP) activity and mineralization capacity, and misregulation of osteogenic genes (Alp, Col1a1, Runx2, and Osterix) and some osteogenesis‐regulatory signaling (ERK/MAPK, EIF2 signaling, RhoA signaling, and Rho Family GTPases). Excitedly, ISRIB, a first bona fide ISR inhibitor, partially alleviated some defects in osteogenic differentiation and growth retardation upon Nipbl haploinsufficiency.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical materials</subject><subject>Bone Diseases, Developmental - genetics</subject><subject>Bone Diseases, Developmental - metabolism</subject><subject>Bone dysplasia</subject><subject>Cartilage</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>cellular senescence</subject><subject>Cellular stress response</subject><subject>Chromosome Segregation - genetics</subject><subject>Cohesin</subject><subject>Damage accumulation</subject><subject>De Lange syndrome</subject><subject>De Lange Syndrome - genetics</subject><subject>De Lange Syndrome - metabolism</subject><subject>Defects</subject><subject>Depletion</subject><subject>Differentiation (biology)</subject><subject>DNA damage</subject><subject>Embryo fibroblasts</subject><subject>Evolution</subject><subject>Fibrillarin</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Genes</subject><subject>Glial stem cells</subject><subject>Heterozygote</subject><subject>integrated stress response (ISR)</subject><subject>Loaders</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neural crest</subject><subject>Neural stem cells</subject><subject>Nipbl</subject><subject>Nucleoli</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteogenesis</subject><subject>Osteogenesis - genetics</subject><subject>Osteoprogenitor cells</subject><subject>Phenotype</subject><subject>Precursors</subject><subject>Proteins</subject><subject>rRNA</subject><subject>Senescence</subject><subject>Skeleton</subject><subject>skeleton development</subject><subject>Survival</subject><subject>Transcription</subject><subject>Transcription, Genetic - genetics</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LxDAQBuAgiq4fB_-ABLzoobtJJ2k3R1m_EfSgN6Fkkylm6TY1aZH992Zd9SB4Gsg8vGReQo45G3PG8snCdGNgQvEtMuJMlZkoZL5NRmnHMyUF3yP7MS4YY0oB7JI9ELxkjPMReb3EGk0fqa-p8W8YXUsbry0G2qC2tPd07lukdhW7RkenqY7RG6d7tPTD9W-0D7qNJriud77VDbUu9kOY69bgIdmpdRPx6HsekJfrq-fZbfbweHM3u3jIDEjgGfKiFpYxCVOJIEotpgBQpxuK2lpRYG5A5JaX60errFIFAkxB6LqcI3I4IGeb3C749wFjXy1dNNg0ukU_xCqXQkqVbpaJnv6hCz-E9O-kCqZyUDLPkzrfKBN8jAHrqgtuqcOq4qxaV16lyquvypM9-U4c5ku0v_Kn4wQmG_DhGlz9n1Tdz542kZ8UOYnz</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Gu, Weihuai</creator><creator>Wang, Lihong</creator><creator>Gu, Renjie</creator><creator>Ouyang, Huiya</creator><creator>Bao, Baicheng</creator><creator>Zheng, Liwei</creator><creator>Xu, Baoshan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8902-1243</orcidid></search><sort><creationdate>202112</creationdate><title>Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance</title><author>Gu, Weihuai ; Wang, Lihong ; Gu, Renjie ; Ouyang, Huiya ; Bao, Baicheng ; Zheng, Liwei ; Xu, Baoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-e16f4d005385e347a48333f6526fdd46e2c342d1733f6d9d996e33834af7bee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical materials</topic><topic>Bone Diseases, Developmental - genetics</topic><topic>Bone Diseases, Developmental - metabolism</topic><topic>Bone dysplasia</topic><topic>Cartilage</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>cellular senescence</topic><topic>Cellular stress response</topic><topic>Chromosome Segregation - genetics</topic><topic>Cohesin</topic><topic>Damage accumulation</topic><topic>De Lange syndrome</topic><topic>De Lange Syndrome - genetics</topic><topic>De Lange Syndrome - metabolism</topic><topic>Defects</topic><topic>Depletion</topic><topic>Differentiation (biology)</topic><topic>DNA damage</topic><topic>Embryo fibroblasts</topic><topic>Evolution</topic><topic>Fibrillarin</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Genes</topic><topic>Glial stem cells</topic><topic>Heterozygote</topic><topic>integrated stress response (ISR)</topic><topic>Loaders</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neural crest</topic><topic>Neural stem cells</topic><topic>Nipbl</topic><topic>Nucleoli</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteogenesis</topic><topic>Osteogenesis - genetics</topic><topic>Osteoprogenitor cells</topic><topic>Phenotype</topic><topic>Precursors</topic><topic>Proteins</topic><topic>rRNA</topic><topic>Senescence</topic><topic>Skeleton</topic><topic>skeleton development</topic><topic>Survival</topic><topic>Transcription</topic><topic>Transcription, Genetic - genetics</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Weihuai</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Gu, Renjie</creatorcontrib><creatorcontrib>Ouyang, Huiya</creatorcontrib><creatorcontrib>Bao, Baicheng</creatorcontrib><creatorcontrib>Zheng, Liwei</creatorcontrib><creatorcontrib>Xu, Baoshan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Weihuai</au><au>Wang, Lihong</au><au>Gu, Renjie</au><au>Ouyang, Huiya</au><au>Bao, Baicheng</au><au>Zheng, Liwei</au><au>Xu, Baoshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2021-12</date><risdate>2021</risdate><volume>236</volume><issue>12</issue><spage>8208</spage><epage>8225</epage><pages>8208-8225</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Cohesin loader nipped‐B‐like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl‐a Cas9‐knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl‐depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion‐induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP‐Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis‐regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS. Nipbl deficiency triggers ISR accompanied by dysregulated ribosome biogenesis and reduced protein translation, nucleolar aberration, defective growth, and differentiation of embryonic osteoblast precursors. Such cellular stress causes poor cell viability, apoptosis, increasing DNA damage (γH2ax and 8‐oxog), and cell senescence (senescence‐associated galactosidase activity), respectively. Osteogenic differentiation was also perturbed by Nipbl haploinsufficiency, associated with reduced alkaline phosphatase (ALP) activity and mineralization capacity, and misregulation of osteogenic genes (Alp, Col1a1, Runx2, and Osterix) and some osteogenesis‐regulatory signaling (ERK/MAPK, EIF2 signaling, RhoA signaling, and Rho Family GTPases). Excitedly, ISRIB, a first bona fide ISR inhibitor, partially alleviated some defects in osteogenic differentiation and growth retardation upon Nipbl haploinsufficiency.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34170011</pmid><doi>10.1002/jcp.30491</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8902-1243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2021-12, Vol.236 (12), p.8208-8225
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2545594175
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Apoptosis
Biomedical materials
Bone Diseases, Developmental - genetics
Bone Diseases, Developmental - metabolism
Bone dysplasia
Cartilage
Cell cycle
Cell differentiation
Cell growth
Cell proliferation
Cell survival
cellular senescence
Cellular stress response
Chromosome Segregation - genetics
Cohesin
Damage accumulation
De Lange syndrome
De Lange Syndrome - genetics
De Lange Syndrome - metabolism
Defects
Depletion
Differentiation (biology)
DNA damage
Embryo fibroblasts
Evolution
Fibrillarin
Fibroblasts
Fibroblasts - metabolism
Genes
Glial stem cells
Heterozygote
integrated stress response (ISR)
Loaders
Mutation
Mutation - genetics
Neural crest
Neural stem cells
Nipbl
Nucleoli
Osteoblastogenesis
Osteoblasts
Osteogenesis
Osteogenesis - genetics
Osteoprogenitor cells
Phenotype
Precursors
Proteins
rRNA
Senescence
Skeleton
skeleton development
Survival
Transcription
Transcription, Genetic - genetics
Zebrafish
Zebrafish - genetics
title Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20of%20cohesin%20loader%20lead%20to%20bone%20dysplasia%20associated%20with%20transcriptional%20disturbance&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Gu,%20Weihuai&rft.date=2021-12&rft.volume=236&rft.issue=12&rft.spage=8208&rft.epage=8225&rft.pages=8208-8225&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30491&rft_dat=%3Cproquest_cross%3E2609239522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609239522&rft_id=info:pmid/34170011&rfr_iscdi=true