A Rotation-Invariant Framework for Deep Point Cloud Analysis
Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2022-12, Vol.28 (12), p.4503-4514 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4514 |
---|---|
container_issue | 12 |
container_start_page | 4503 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Li, Xianzhi Li, Ruihui Chen, Guangyong Fu, Chi-Wing Cohen-Or, Daniel Heng, Pheng-Ann |
description | Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods. |
doi_str_mv | 10.1109/TVCG.2021.3092570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545592227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9465688</ieee_id><sourcerecordid>2545592227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlZ_gHhZ8OJl6yS7-QIvZbW1UFCkeg3pbgJbt5ua7Cr996a0ePA0A_O8w8yD0DWGMcYg75cfxWxMgOBxBpJQDidoiGWOU6DATmMPnKeEETZAFyGsAXCeC3mOBlmOOQjCh-hhkry5Tne1a9N5-619rdsumXq9MT_OfybW-eTRmG3y6uo4KBrXV8mk1c0u1OESnVndBHN1rCP0Pn1aFs_p4mU2LyaLtMwI61JLDNWgV5YD5VUJZsW4KYk18YeVLXFpmeZSYsJXUlRCGikFFVXFrS4rC5CN0N1h79a7r96ETm3qUJqm0a1xfVCE5pRKQgiP6O0_dO16H--NFCeCckxFHil8oErvQvDGqq2vN9rvFAa1V6v2atVerTqqjZmbQ6Y2xvzxMmeUCZH9AsiKci8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728571584</pqid></control><display><type>article</type><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</creator><creatorcontrib>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</creatorcontrib><description>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3092570</identifier><identifier>PMID: 34170827</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cartesian coordinates ; Computer architecture ; Convolution ; Deep learning ; deep neural network ; Feature extraction ; Invariants ; Network architecture ; Neural networks ; Point cloud analysis ; Point cloud compression ; Representations ; Rotation ; rotation-invariant representation ; Shape recognition ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4503-4514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</citedby><cites>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</cites><orcidid>0000-0002-5238-593X ; 0000-0001-6777-7445 ; 0000-0003-3055-5034 ; 0000-0001-6835-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9465688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9465688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xianzhi</creatorcontrib><creatorcontrib>Li, Ruihui</creatorcontrib><creatorcontrib>Chen, Guangyong</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Cohen-Or, Daniel</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Cartesian coordinates</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Invariants</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Point cloud analysis</subject><subject>Point cloud compression</subject><subject>Representations</subject><subject>Rotation</subject><subject>rotation-invariant representation</subject><subject>Shape recognition</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlZ_gHhZ8OJl6yS7-QIvZbW1UFCkeg3pbgJbt5ua7Cr996a0ePA0A_O8w8yD0DWGMcYg75cfxWxMgOBxBpJQDidoiGWOU6DATmMPnKeEETZAFyGsAXCeC3mOBlmOOQjCh-hhkry5Tne1a9N5-619rdsumXq9MT_OfybW-eTRmG3y6uo4KBrXV8mk1c0u1OESnVndBHN1rCP0Pn1aFs_p4mU2LyaLtMwI61JLDNWgV5YD5VUJZsW4KYk18YeVLXFpmeZSYsJXUlRCGikFFVXFrS4rC5CN0N1h79a7r96ETm3qUJqm0a1xfVCE5pRKQgiP6O0_dO16H--NFCeCckxFHil8oErvQvDGqq2vN9rvFAa1V6v2atVerTqqjZmbQ6Y2xvzxMmeUCZH9AsiKci8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Xianzhi</creator><creator>Li, Ruihui</creator><creator>Chen, Guangyong</creator><creator>Fu, Chi-Wing</creator><creator>Cohen-Or, Daniel</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5238-593X</orcidid><orcidid>https://orcid.org/0000-0001-6777-7445</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0001-6835-5607</orcidid></search><sort><creationdate>20221201</creationdate><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><author>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cartesian coordinates</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Invariants</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Point cloud analysis</topic><topic>Point cloud compression</topic><topic>Representations</topic><topic>Rotation</topic><topic>rotation-invariant representation</topic><topic>Shape recognition</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianzhi</creatorcontrib><creatorcontrib>Li, Ruihui</creatorcontrib><creatorcontrib>Chen, Guangyong</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Cohen-Or, Daniel</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xianzhi</au><au>Li, Ruihui</au><au>Chen, Guangyong</au><au>Fu, Chi-Wing</au><au>Cohen-Or, Daniel</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rotation-Invariant Framework for Deep Point Cloud Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>4503</spage><epage>4514</epage><pages>4503-4514</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34170827</pmid><doi>10.1109/TVCG.2021.3092570</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5238-593X</orcidid><orcidid>https://orcid.org/0000-0001-6777-7445</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0001-6835-5607</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4503-4514 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2545592227 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cartesian coordinates Computer architecture Convolution Deep learning deep neural network Feature extraction Invariants Network architecture Neural networks Point cloud analysis Point cloud compression Representations Rotation rotation-invariant representation Shape recognition Three dimensional models Three-dimensional displays |
title | A Rotation-Invariant Framework for Deep Point Cloud Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rotation-Invariant%20Framework%20for%20Deep%20Point%20Cloud%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Li,%20Xianzhi&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=4503&rft.epage=4514&rft.pages=4503-4514&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3092570&rft_dat=%3Cproquest_RIE%3E2545592227%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728571584&rft_id=info:pmid/34170827&rft_ieee_id=9465688&rfr_iscdi=true |