A Rotation-Invariant Framework for Deep Point Cloud Analysis

Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2022-12, Vol.28 (12), p.4503-4514
Hauptverfasser: Li, Xianzhi, Li, Ruihui, Chen, Guangyong, Fu, Chi-Wing, Cohen-Or, Daniel, Heng, Pheng-Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4514
container_issue 12
container_start_page 4503
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Li, Xianzhi
Li, Ruihui
Chen, Guangyong
Fu, Chi-Wing
Cohen-Or, Daniel
Heng, Pheng-Ann
description Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.
doi_str_mv 10.1109/TVCG.2021.3092570
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2545592227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9465688</ieee_id><sourcerecordid>2545592227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlZ_gHhZ8OJl6yS7-QIvZbW1UFCkeg3pbgJbt5ua7Cr996a0ePA0A_O8w8yD0DWGMcYg75cfxWxMgOBxBpJQDidoiGWOU6DATmMPnKeEETZAFyGsAXCeC3mOBlmOOQjCh-hhkry5Tne1a9N5-619rdsumXq9MT_OfybW-eTRmG3y6uo4KBrXV8mk1c0u1OESnVndBHN1rCP0Pn1aFs_p4mU2LyaLtMwI61JLDNWgV5YD5VUJZsW4KYk18YeVLXFpmeZSYsJXUlRCGikFFVXFrS4rC5CN0N1h79a7r96ETm3qUJqm0a1xfVCE5pRKQgiP6O0_dO16H--NFCeCckxFHil8oErvQvDGqq2vN9rvFAa1V6v2atVerTqqjZmbQ6Y2xvzxMmeUCZH9AsiKci8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728571584</pqid></control><display><type>article</type><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</creator><creatorcontrib>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</creatorcontrib><description>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3092570</identifier><identifier>PMID: 34170827</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cartesian coordinates ; Computer architecture ; Convolution ; Deep learning ; deep neural network ; Feature extraction ; Invariants ; Network architecture ; Neural networks ; Point cloud analysis ; Point cloud compression ; Representations ; Rotation ; rotation-invariant representation ; Shape recognition ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4503-4514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</citedby><cites>FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</cites><orcidid>0000-0002-5238-593X ; 0000-0001-6777-7445 ; 0000-0003-3055-5034 ; 0000-0001-6835-5607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9465688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9465688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xianzhi</creatorcontrib><creatorcontrib>Li, Ruihui</creatorcontrib><creatorcontrib>Chen, Guangyong</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Cohen-Or, Daniel</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</description><subject>Artificial neural networks</subject><subject>Cartesian coordinates</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Invariants</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Point cloud analysis</subject><subject>Point cloud compression</subject><subject>Representations</subject><subject>Rotation</subject><subject>rotation-invariant representation</subject><subject>Shape recognition</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlZ_gHhZ8OJl6yS7-QIvZbW1UFCkeg3pbgJbt5ua7Cr996a0ePA0A_O8w8yD0DWGMcYg75cfxWxMgOBxBpJQDidoiGWOU6DATmMPnKeEETZAFyGsAXCeC3mOBlmOOQjCh-hhkry5Tne1a9N5-619rdsumXq9MT_OfybW-eTRmG3y6uo4KBrXV8mk1c0u1OESnVndBHN1rCP0Pn1aFs_p4mU2LyaLtMwI61JLDNWgV5YD5VUJZsW4KYk18YeVLXFpmeZSYsJXUlRCGikFFVXFrS4rC5CN0N1h79a7r96ETm3qUJqm0a1xfVCE5pRKQgiP6O0_dO16H--NFCeCckxFHil8oErvQvDGqq2vN9rvFAa1V6v2atVerTqqjZmbQ6Y2xvzxMmeUCZH9AsiKci8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Xianzhi</creator><creator>Li, Ruihui</creator><creator>Chen, Guangyong</creator><creator>Fu, Chi-Wing</creator><creator>Cohen-Or, Daniel</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5238-593X</orcidid><orcidid>https://orcid.org/0000-0001-6777-7445</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0001-6835-5607</orcidid></search><sort><creationdate>20221201</creationdate><title>A Rotation-Invariant Framework for Deep Point Cloud Analysis</title><author>Li, Xianzhi ; Li, Ruihui ; Chen, Guangyong ; Fu, Chi-Wing ; Cohen-Or, Daniel ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f2e5a0abf7057dc0eb67ec2fe109bfc1cf6a799127b98d89e99858dd7facdf003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cartesian coordinates</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Invariants</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Point cloud analysis</topic><topic>Point cloud compression</topic><topic>Representations</topic><topic>Rotation</topic><topic>rotation-invariant representation</topic><topic>Shape recognition</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianzhi</creatorcontrib><creatorcontrib>Li, Ruihui</creatorcontrib><creatorcontrib>Chen, Guangyong</creatorcontrib><creatorcontrib>Fu, Chi-Wing</creatorcontrib><creatorcontrib>Cohen-Or, Daniel</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xianzhi</au><au>Li, Ruihui</au><au>Chen, Guangyong</au><au>Fu, Chi-Wing</au><au>Cohen-Or, Daniel</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rotation-Invariant Framework for Deep Point Cloud Analysis</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>4503</spage><epage>4514</epage><pages>4503-4514</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34170827</pmid><doi>10.1109/TVCG.2021.3092570</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5238-593X</orcidid><orcidid>https://orcid.org/0000-0001-6777-7445</orcidid><orcidid>https://orcid.org/0000-0003-3055-5034</orcidid><orcidid>https://orcid.org/0000-0001-6835-5607</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-12, Vol.28 (12), p.4503-4514
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_2545592227
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cartesian coordinates
Computer architecture
Convolution
Deep learning
deep neural network
Feature extraction
Invariants
Network architecture
Neural networks
Point cloud analysis
Point cloud compression
Representations
Rotation
rotation-invariant representation
Shape recognition
Three dimensional models
Three-dimensional displays
title A Rotation-Invariant Framework for Deep Point Cloud Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rotation-Invariant%20Framework%20for%20Deep%20Point%20Cloud%20Analysis&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Li,%20Xianzhi&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=4503&rft.epage=4514&rft.pages=4503-4514&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3092570&rft_dat=%3Cproquest_RIE%3E2545592227%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728571584&rft_id=info:pmid/34170827&rft_ieee_id=9465688&rfr_iscdi=true