Food availability and long-term predation risk interactively affect antipredator response

Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2021-09, Vol.102 (9), p.1-10
Hauptverfasser: Shiratsuru, Shotaro, Majchrzak, Yasmine N., Peers, Michael J. L., Studd, Emily K., Menzies, Allyson K., Derbyshire, Rachael, Humphries, Murray M., Krebs, Charles J., Murray, Dennis L., Boutin, Stan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 1
container_title Ecology (Durham)
container_volume 102
creator Shiratsuru, Shotaro
Majchrzak, Yasmine N.
Peers, Michael J. L.
Studd, Emily K.
Menzies, Allyson K.
Derbyshire, Rachael
Humphries, Murray M.
Krebs, Charles J.
Murray, Dennis L.
Boutin, Stan
description Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.
doi_str_mv 10.1002/ecy.3456
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544881570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27070672</jstor_id><sourcerecordid>27070672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgitYq-AeUBS9etk42X5ujFL9A8KIHT0s2Oyup201NtpX-eyOtCoK5DIRnXoaXkBMKEwpQXKJdTxgXcoeMqGY611TBLhkB0CLXUpQH5DDGGaRHeblPDhinUqhSjsjLjfdNZlbGdaZ2nRvWmembrPP9az5gmGeLgI0ZnO-z4OJb5vr0a-zgVtgl2rZoh7QxuI3zIQsYF76PeET2WtNFPN7OMXm-uX6a3uUPj7f306uH3DJFZV7QEqhgUIMVVGKLCKrmVjZtAZYzZA1QBhpBC2OAs7K2EpU2XIvaFtyyMbnY5C6Cf19iHKq5ixa7zvTol7EqBOdlSYWCRM__0Jlfhj5dl5RUmjGt6G-gDT7GgG21CG5uwrqiUH3VXaW6q6-6Ez3bBi7rOTY_8LvfBPIN-HAdrv8Nqq6nL9vA042fxdTljy8UKJCqYJ8CfpJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567933971</pqid></control><display><type>article</type><title>Food availability and long-term predation risk interactively affect antipredator response</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</creator><creatorcontrib>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</creatorcontrib><description>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.3456</identifier><identifier>PMID: 34165786</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>Animals ; Anti-predator behavior ; antipredator response ; Availability ; Dietary supplements ; Food ; Food availability ; Food Chain ; Foraging behavior ; Lepus americanus ; Lynx canadensis ; nonconsumptive effect ; Predation ; predation risk ; Predators ; Predatory Behavior ; predator–prey ; Prey ; Risk factors ; Risk management ; Temporal variations ; Yukon Territory</subject><ispartof>Ecology (Durham), 2021-09, Vol.102 (9), p.1-10</ispartof><rights>2021 by the Ecological Society of America</rights><rights>2021 by the Ecological Society of America.</rights><rights>2021 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</citedby><cites>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</cites><orcidid>0000-0001-8747-9664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27070672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27070672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34165786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiratsuru, Shotaro</creatorcontrib><creatorcontrib>Majchrzak, Yasmine N.</creatorcontrib><creatorcontrib>Peers, Michael J. L.</creatorcontrib><creatorcontrib>Studd, Emily K.</creatorcontrib><creatorcontrib>Menzies, Allyson K.</creatorcontrib><creatorcontrib>Derbyshire, Rachael</creatorcontrib><creatorcontrib>Humphries, Murray M.</creatorcontrib><creatorcontrib>Krebs, Charles J.</creatorcontrib><creatorcontrib>Murray, Dennis L.</creatorcontrib><creatorcontrib>Boutin, Stan</creatorcontrib><title>Food availability and long-term predation risk interactively affect antipredator response</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</description><subject>Animals</subject><subject>Anti-predator behavior</subject><subject>antipredator response</subject><subject>Availability</subject><subject>Dietary supplements</subject><subject>Food</subject><subject>Food availability</subject><subject>Food Chain</subject><subject>Foraging behavior</subject><subject>Lepus americanus</subject><subject>Lynx canadensis</subject><subject>nonconsumptive effect</subject><subject>Predation</subject><subject>predation risk</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>predator–prey</subject><subject>Prey</subject><subject>Risk factors</subject><subject>Risk management</subject><subject>Temporal variations</subject><subject>Yukon Territory</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQBuAgitYq-AeUBS9etk42X5ujFL9A8KIHT0s2Oyup201NtpX-eyOtCoK5DIRnXoaXkBMKEwpQXKJdTxgXcoeMqGY611TBLhkB0CLXUpQH5DDGGaRHeblPDhinUqhSjsjLjfdNZlbGdaZ2nRvWmembrPP9az5gmGeLgI0ZnO-z4OJb5vr0a-zgVtgl2rZoh7QxuI3zIQsYF76PeET2WtNFPN7OMXm-uX6a3uUPj7f306uH3DJFZV7QEqhgUIMVVGKLCKrmVjZtAZYzZA1QBhpBC2OAs7K2EpU2XIvaFtyyMbnY5C6Cf19iHKq5ixa7zvTol7EqBOdlSYWCRM__0Jlfhj5dl5RUmjGt6G-gDT7GgG21CG5uwrqiUH3VXaW6q6-6Ez3bBi7rOTY_8LvfBPIN-HAdrv8Nqq6nL9vA042fxdTljy8UKJCqYJ8CfpJ7</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shiratsuru, Shotaro</creator><creator>Majchrzak, Yasmine N.</creator><creator>Peers, Michael J. L.</creator><creator>Studd, Emily K.</creator><creator>Menzies, Allyson K.</creator><creator>Derbyshire, Rachael</creator><creator>Humphries, Murray M.</creator><creator>Krebs, Charles J.</creator><creator>Murray, Dennis L.</creator><creator>Boutin, Stan</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8747-9664</orcidid></search><sort><creationdate>20210901</creationdate><title>Food availability and long-term predation risk interactively affect antipredator response</title><author>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-predator behavior</topic><topic>antipredator response</topic><topic>Availability</topic><topic>Dietary supplements</topic><topic>Food</topic><topic>Food availability</topic><topic>Food Chain</topic><topic>Foraging behavior</topic><topic>Lepus americanus</topic><topic>Lynx canadensis</topic><topic>nonconsumptive effect</topic><topic>Predation</topic><topic>predation risk</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>predator–prey</topic><topic>Prey</topic><topic>Risk factors</topic><topic>Risk management</topic><topic>Temporal variations</topic><topic>Yukon Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiratsuru, Shotaro</creatorcontrib><creatorcontrib>Majchrzak, Yasmine N.</creatorcontrib><creatorcontrib>Peers, Michael J. L.</creatorcontrib><creatorcontrib>Studd, Emily K.</creatorcontrib><creatorcontrib>Menzies, Allyson K.</creatorcontrib><creatorcontrib>Derbyshire, Rachael</creatorcontrib><creatorcontrib>Humphries, Murray M.</creatorcontrib><creatorcontrib>Krebs, Charles J.</creatorcontrib><creatorcontrib>Murray, Dennis L.</creatorcontrib><creatorcontrib>Boutin, Stan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiratsuru, Shotaro</au><au>Majchrzak, Yasmine N.</au><au>Peers, Michael J. L.</au><au>Studd, Emily K.</au><au>Menzies, Allyson K.</au><au>Derbyshire, Rachael</au><au>Humphries, Murray M.</au><au>Krebs, Charles J.</au><au>Murray, Dennis L.</au><au>Boutin, Stan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Food availability and long-term predation risk interactively affect antipredator response</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>102</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>34165786</pmid><doi>10.1002/ecy.3456</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8747-9664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2021-09, Vol.102 (9), p.1-10
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_2544881570
source MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Animals
Anti-predator behavior
antipredator response
Availability
Dietary supplements
Food
Food availability
Food Chain
Foraging behavior
Lepus americanus
Lynx canadensis
nonconsumptive effect
Predation
predation risk
Predators
Predatory Behavior
predator–prey
Prey
Risk factors
Risk management
Temporal variations
Yukon Territory
title Food availability and long-term predation risk interactively affect antipredator response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Food%20availability%20and%20long-term%20predation%20risk%20interactively%20affect%20antipredator%20response&rft.jtitle=Ecology%20(Durham)&rft.au=Shiratsuru,%20Shotaro&rft.date=2021-09-01&rft.volume=102&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.3456&rft_dat=%3Cjstor_proqu%3E27070672%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2567933971&rft_id=info:pmid/34165786&rft_jstor_id=27070672&rfr_iscdi=true