Food availability and long-term predation risk interactively affect antipredator response
Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect a...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2021-09, Vol.102 (9), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Ecology (Durham) |
container_volume | 102 |
creator | Shiratsuru, Shotaro Majchrzak, Yasmine N. Peers, Michael J. L. Studd, Emily K. Menzies, Allyson K. Derbyshire, Rachael Humphries, Murray M. Krebs, Charles J. Murray, Dennis L. Boutin, Stan |
description | Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations. |
doi_str_mv | 10.1002/ecy.3456 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544881570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27070672</jstor_id><sourcerecordid>27070672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgitYq-AeUBS9etk42X5ujFL9A8KIHT0s2Oyup201NtpX-eyOtCoK5DIRnXoaXkBMKEwpQXKJdTxgXcoeMqGY611TBLhkB0CLXUpQH5DDGGaRHeblPDhinUqhSjsjLjfdNZlbGdaZ2nRvWmembrPP9az5gmGeLgI0ZnO-z4OJb5vr0a-zgVtgl2rZoh7QxuI3zIQsYF76PeET2WtNFPN7OMXm-uX6a3uUPj7f306uH3DJFZV7QEqhgUIMVVGKLCKrmVjZtAZYzZA1QBhpBC2OAs7K2EpU2XIvaFtyyMbnY5C6Cf19iHKq5ixa7zvTol7EqBOdlSYWCRM__0Jlfhj5dl5RUmjGt6G-gDT7GgG21CG5uwrqiUH3VXaW6q6-6Ez3bBi7rOTY_8LvfBPIN-HAdrv8Nqq6nL9vA042fxdTljy8UKJCqYJ8CfpJ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567933971</pqid></control><display><type>article</type><title>Food availability and long-term predation risk interactively affect antipredator response</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</creator><creatorcontrib>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</creatorcontrib><description>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.3456</identifier><identifier>PMID: 34165786</identifier><language>eng</language><publisher>United States: John Wiley and Sons, Inc</publisher><subject>Animals ; Anti-predator behavior ; antipredator response ; Availability ; Dietary supplements ; Food ; Food availability ; Food Chain ; Foraging behavior ; Lepus americanus ; Lynx canadensis ; nonconsumptive effect ; Predation ; predation risk ; Predators ; Predatory Behavior ; predator–prey ; Prey ; Risk factors ; Risk management ; Temporal variations ; Yukon Territory</subject><ispartof>Ecology (Durham), 2021-09, Vol.102 (9), p.1-10</ispartof><rights>2021 by the Ecological Society of America</rights><rights>2021 by the Ecological Society of America.</rights><rights>2021 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</citedby><cites>FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</cites><orcidid>0000-0001-8747-9664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27070672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27070672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34165786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiratsuru, Shotaro</creatorcontrib><creatorcontrib>Majchrzak, Yasmine N.</creatorcontrib><creatorcontrib>Peers, Michael J. L.</creatorcontrib><creatorcontrib>Studd, Emily K.</creatorcontrib><creatorcontrib>Menzies, Allyson K.</creatorcontrib><creatorcontrib>Derbyshire, Rachael</creatorcontrib><creatorcontrib>Humphries, Murray M.</creatorcontrib><creatorcontrib>Krebs, Charles J.</creatorcontrib><creatorcontrib>Murray, Dennis L.</creatorcontrib><creatorcontrib>Boutin, Stan</creatorcontrib><title>Food availability and long-term predation risk interactively affect antipredator response</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</description><subject>Animals</subject><subject>Anti-predator behavior</subject><subject>antipredator response</subject><subject>Availability</subject><subject>Dietary supplements</subject><subject>Food</subject><subject>Food availability</subject><subject>Food Chain</subject><subject>Foraging behavior</subject><subject>Lepus americanus</subject><subject>Lynx canadensis</subject><subject>nonconsumptive effect</subject><subject>Predation</subject><subject>predation risk</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>predator–prey</subject><subject>Prey</subject><subject>Risk factors</subject><subject>Risk management</subject><subject>Temporal variations</subject><subject>Yukon Territory</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQBuAgitYq-AeUBS9etk42X5ujFL9A8KIHT0s2Oyup201NtpX-eyOtCoK5DIRnXoaXkBMKEwpQXKJdTxgXcoeMqGY611TBLhkB0CLXUpQH5DDGGaRHeblPDhinUqhSjsjLjfdNZlbGdaZ2nRvWmembrPP9az5gmGeLgI0ZnO-z4OJb5vr0a-zgVtgl2rZoh7QxuI3zIQsYF76PeET2WtNFPN7OMXm-uX6a3uUPj7f306uH3DJFZV7QEqhgUIMVVGKLCKrmVjZtAZYzZA1QBhpBC2OAs7K2EpU2XIvaFtyyMbnY5C6Cf19iHKq5ixa7zvTol7EqBOdlSYWCRM__0Jlfhj5dl5RUmjGt6G-gDT7GgG21CG5uwrqiUH3VXaW6q6-6Ez3bBi7rOTY_8LvfBPIN-HAdrv8Nqq6nL9vA042fxdTljy8UKJCqYJ8CfpJ7</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shiratsuru, Shotaro</creator><creator>Majchrzak, Yasmine N.</creator><creator>Peers, Michael J. L.</creator><creator>Studd, Emily K.</creator><creator>Menzies, Allyson K.</creator><creator>Derbyshire, Rachael</creator><creator>Humphries, Murray M.</creator><creator>Krebs, Charles J.</creator><creator>Murray, Dennis L.</creator><creator>Boutin, Stan</creator><general>John Wiley and Sons, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8747-9664</orcidid></search><sort><creationdate>20210901</creationdate><title>Food availability and long-term predation risk interactively affect antipredator response</title><author>Shiratsuru, Shotaro ; Majchrzak, Yasmine N. ; Peers, Michael J. L. ; Studd, Emily K. ; Menzies, Allyson K. ; Derbyshire, Rachael ; Humphries, Murray M. ; Krebs, Charles J. ; Murray, Dennis L. ; Boutin, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3716-21801530b0c516efee07b4c6df20c43e3d01309e095aa0438bc6e79a495bc24c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anti-predator behavior</topic><topic>antipredator response</topic><topic>Availability</topic><topic>Dietary supplements</topic><topic>Food</topic><topic>Food availability</topic><topic>Food Chain</topic><topic>Foraging behavior</topic><topic>Lepus americanus</topic><topic>Lynx canadensis</topic><topic>nonconsumptive effect</topic><topic>Predation</topic><topic>predation risk</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>predator–prey</topic><topic>Prey</topic><topic>Risk factors</topic><topic>Risk management</topic><topic>Temporal variations</topic><topic>Yukon Territory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiratsuru, Shotaro</creatorcontrib><creatorcontrib>Majchrzak, Yasmine N.</creatorcontrib><creatorcontrib>Peers, Michael J. L.</creatorcontrib><creatorcontrib>Studd, Emily K.</creatorcontrib><creatorcontrib>Menzies, Allyson K.</creatorcontrib><creatorcontrib>Derbyshire, Rachael</creatorcontrib><creatorcontrib>Humphries, Murray M.</creatorcontrib><creatorcontrib>Krebs, Charles J.</creatorcontrib><creatorcontrib>Murray, Dennis L.</creatorcontrib><creatorcontrib>Boutin, Stan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiratsuru, Shotaro</au><au>Majchrzak, Yasmine N.</au><au>Peers, Michael J. L.</au><au>Studd, Emily K.</au><au>Menzies, Allyson K.</au><au>Derbyshire, Rachael</au><au>Humphries, Murray M.</au><au>Krebs, Charles J.</au><au>Murray, Dennis L.</au><au>Boutin, Stan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Food availability and long-term predation risk interactively affect antipredator response</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>102</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>Food availability and temporal variation in predation risk are both important determinants of the magnitude of antipredator responses, but their effects have rarely been examined simultaneously, particularly in wild prey. Here, we determine how food availability and long-term predation risk affect antipredator responses to acute predation risk by monitoring the foraging response of free-ranging snowshoe hares (Lepus americanus) to an encounter with a Canada lynx (Lynx canadensis) in Yukon, Canada, over four winters (2015–2016 to 2018–2019). We examined how this response was influenced by natural variation in long-term predation risk (2-month mortality rate of hares) while providing some individuals with supplemental food. On average, snowshoe hares reduced foraging time up to 10 h after coming into close proximity (≤75 m) with lynx, and reduced foraging time an average of 15.28 ± 7.08 min per lynx encounter. Hares tended to respond more strongly when the distance to lynx was shorter. More importantly, the magnitude of hares’ antipredator response to a lynx encounter was affected by the interaction between food-supplementation and long-term predation risk. Food-supplemented hares reduced foraging time more than control hares after a lynx encounter under low long-term risk, but decreased the magnitude of the response as long-term risk increased. In contrast, control hares increased the magnitude of their response as long-term risk increased. Our findings show that food availability and long-term predation risk interactively drive the magnitude of reactive antipredator response to acute predation risk. Determining the factors driving the magnitude of antipredator responses would contribute to a better understanding of the indirect effects of predators on prey populations.</abstract><cop>United States</cop><pub>John Wiley and Sons, Inc</pub><pmid>34165786</pmid><doi>10.1002/ecy.3456</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8747-9664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2021-09, Vol.102 (9), p.1-10 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_2544881570 |
source | MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Animals Anti-predator behavior antipredator response Availability Dietary supplements Food Food availability Food Chain Foraging behavior Lepus americanus Lynx canadensis nonconsumptive effect Predation predation risk Predators Predatory Behavior predator–prey Prey Risk factors Risk management Temporal variations Yukon Territory |
title | Food availability and long-term predation risk interactively affect antipredator response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Food%20availability%20and%20long-term%20predation%20risk%20interactively%20affect%20antipredator%20response&rft.jtitle=Ecology%20(Durham)&rft.au=Shiratsuru,%20Shotaro&rft.date=2021-09-01&rft.volume=102&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.3456&rft_dat=%3Cjstor_proqu%3E27070672%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2567933971&rft_id=info:pmid/34165786&rft_jstor_id=27070672&rfr_iscdi=true |