Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation

Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2021-09, Vol.162 (9), p.1
Hauptverfasser: Sato, Marimo, Minabe, Shiori, Sakono, Takahiro, Magata, Fumie, Nakamura, Sho, Watanabe, Youki, Inoue, Naoko, Uenoyama, Yoshihisa, Tsukamura, Hiroko, Matsuda, Fuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1
container_title Endocrinology (Philadelphia)
container_volume 162
creator Sato, Marimo
Minabe, Shiori
Sakono, Takahiro
Magata, Fumie
Nakamura, Sho
Watanabe, Youki
Inoue, Naoko
Uenoyama, Yoshihisa
Tsukamura, Hiroko
Matsuda, Fuko
description Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.
doi_str_mv 10.1210/endocr/bqab125
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544878834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779354092</galeid><oup_id>10.1210/endocr/bqab125</oup_id><sourcerecordid>A779354092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-bd3e82320e53abc9f048e4b1cd80aeeae26e6f7f41cfecfa1813440d2b528d293</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4MouFavngNe9DBtfs0mc1yKdoW2Cq3nkMm8dFOyyTSZqc5_b5YtCKUg7xDey-f7PXy_CH2k5JQySs4gDsnms_7B9JS1r9CKdqJtJJXkNVoRQnkjGZNv0btS7usqhOAr9Ocq5XGXQrrz1gS8iSYsxRecHJ52gLc-Dn02PuKLMNtUAN9ALCk322VM084Es_cWX8Ocq_inmXa_zYI3dvKPZoIB98tzhzEfvnyK79EbZ0KBD0_vCfr17evt-ba5_HHx_Xxz2diWyKnpBw6KcUag5aa3nSNCgeipHRQxAAbYGtZOOkGtA-sMVZQLQQbWt0wNrOMn6PPRd8zpYYYy6b0vFkIwEdJcNGuFUFIpLir66Rl6n-ZcE6mU6ui6petO_qPuTADto0tTNvZgqjdSdrwVpGOVOn2BqjNATSxFcL7eXxLYnErJ4HSNam_yoinRh371sV_91G8VfDkK0jz-j_0LH9Op_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891651697</pqid></control><display><type>article</type><title>Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sato, Marimo ; Minabe, Shiori ; Sakono, Takahiro ; Magata, Fumie ; Nakamura, Sho ; Watanabe, Youki ; Inoue, Naoko ; Uenoyama, Yoshihisa ; Tsukamura, Hiroko ; Matsuda, Fuko</creator><creatorcontrib>Sato, Marimo ; Minabe, Shiori ; Sakono, Takahiro ; Magata, Fumie ; Nakamura, Sho ; Watanabe, Youki ; Inoue, Naoko ; Uenoyama, Yoshihisa ; Tsukamura, Hiroko ; Matsuda, Fuko</creatorcontrib><description>Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endocr/bqab125</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>ACTH ; Analysis ; Arcuate nucleus ; Availability ; Blood ; Blood glucose ; Blood levels ; Blood sugar ; Brain ; c-Fos protein ; Cell activation ; Corticotropin releasing hormone ; Dopamine ; Dopamine β-monooxygenase ; Endocrinology ; Ependymal cells ; Food ; Food intake ; Fos protein ; Gene expression ; Gluconeogenesis ; Glucose ; Glucose metabolism ; Hindbrain ; Hypothalamus ; Neurons ; Neuropeptide Y ; Nuclei (cytology) ; Paraventricular nucleus ; Pharmaceutical industry ; Physiological aspects ; Physiological responses ; RNA ; Sensors ; Testosterone ; Ventricle ; Ventricles (cerebral)</subject><ispartof>Endocrinology (Philadelphia), 2021-09, Vol.162 (9), p.1</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-bd3e82320e53abc9f048e4b1cd80aeeae26e6f7f41cfecfa1813440d2b528d293</citedby><cites>FETCH-LOGICAL-c507t-bd3e82320e53abc9f048e4b1cd80aeeae26e6f7f41cfecfa1813440d2b528d293</cites><orcidid>0000-0002-0833-0309 ; 0000-0003-2775-6652 ; 0000-0001-7304-1637 ; 0000-0001-8396-2421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Sato, Marimo</creatorcontrib><creatorcontrib>Minabe, Shiori</creatorcontrib><creatorcontrib>Sakono, Takahiro</creatorcontrib><creatorcontrib>Magata, Fumie</creatorcontrib><creatorcontrib>Nakamura, Sho</creatorcontrib><creatorcontrib>Watanabe, Youki</creatorcontrib><creatorcontrib>Inoue, Naoko</creatorcontrib><creatorcontrib>Uenoyama, Yoshihisa</creatorcontrib><creatorcontrib>Tsukamura, Hiroko</creatorcontrib><creatorcontrib>Matsuda, Fuko</creatorcontrib><title>Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation</title><title>Endocrinology (Philadelphia)</title><description>Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.</description><subject>ACTH</subject><subject>Analysis</subject><subject>Arcuate nucleus</subject><subject>Availability</subject><subject>Blood</subject><subject>Blood glucose</subject><subject>Blood levels</subject><subject>Blood sugar</subject><subject>Brain</subject><subject>c-Fos protein</subject><subject>Cell activation</subject><subject>Corticotropin releasing hormone</subject><subject>Dopamine</subject><subject>Dopamine β-monooxygenase</subject><subject>Endocrinology</subject><subject>Ependymal cells</subject><subject>Food</subject><subject>Food intake</subject><subject>Fos protein</subject><subject>Gene expression</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hindbrain</subject><subject>Hypothalamus</subject><subject>Neurons</subject><subject>Neuropeptide Y</subject><subject>Nuclei (cytology)</subject><subject>Paraventricular nucleus</subject><subject>Pharmaceutical industry</subject><subject>Physiological aspects</subject><subject>Physiological responses</subject><subject>RNA</subject><subject>Sensors</subject><subject>Testosterone</subject><subject>Ventricle</subject><subject>Ventricles (cerebral)</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4MouFavngNe9DBtfs0mc1yKdoW2Cq3nkMm8dFOyyTSZqc5_b5YtCKUg7xDey-f7PXy_CH2k5JQySs4gDsnms_7B9JS1r9CKdqJtJJXkNVoRQnkjGZNv0btS7usqhOAr9Ocq5XGXQrrz1gS8iSYsxRecHJ52gLc-Dn02PuKLMNtUAN9ALCk322VM084Es_cWX8Ocq_inmXa_zYI3dvKPZoIB98tzhzEfvnyK79EbZ0KBD0_vCfr17evt-ba5_HHx_Xxz2diWyKnpBw6KcUag5aa3nSNCgeipHRQxAAbYGtZOOkGtA-sMVZQLQQbWt0wNrOMn6PPRd8zpYYYy6b0vFkIwEdJcNGuFUFIpLir66Rl6n-ZcE6mU6ui6petO_qPuTADto0tTNvZgqjdSdrwVpGOVOn2BqjNATSxFcL7eXxLYnErJ4HSNam_yoinRh371sV_91G8VfDkK0jz-j_0LH9Op_w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sato, Marimo</creator><creator>Minabe, Shiori</creator><creator>Sakono, Takahiro</creator><creator>Magata, Fumie</creator><creator>Nakamura, Sho</creator><creator>Watanabe, Youki</creator><creator>Inoue, Naoko</creator><creator>Uenoyama, Yoshihisa</creator><creator>Tsukamura, Hiroko</creator><creator>Matsuda, Fuko</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0833-0309</orcidid><orcidid>https://orcid.org/0000-0003-2775-6652</orcidid><orcidid>https://orcid.org/0000-0001-7304-1637</orcidid><orcidid>https://orcid.org/0000-0001-8396-2421</orcidid></search><sort><creationdate>20210901</creationdate><title>Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation</title><author>Sato, Marimo ; Minabe, Shiori ; Sakono, Takahiro ; Magata, Fumie ; Nakamura, Sho ; Watanabe, Youki ; Inoue, Naoko ; Uenoyama, Yoshihisa ; Tsukamura, Hiroko ; Matsuda, Fuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-bd3e82320e53abc9f048e4b1cd80aeeae26e6f7f41cfecfa1813440d2b528d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACTH</topic><topic>Analysis</topic><topic>Arcuate nucleus</topic><topic>Availability</topic><topic>Blood</topic><topic>Blood glucose</topic><topic>Blood levels</topic><topic>Blood sugar</topic><topic>Brain</topic><topic>c-Fos protein</topic><topic>Cell activation</topic><topic>Corticotropin releasing hormone</topic><topic>Dopamine</topic><topic>Dopamine β-monooxygenase</topic><topic>Endocrinology</topic><topic>Ependymal cells</topic><topic>Food</topic><topic>Food intake</topic><topic>Fos protein</topic><topic>Gene expression</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hindbrain</topic><topic>Hypothalamus</topic><topic>Neurons</topic><topic>Neuropeptide Y</topic><topic>Nuclei (cytology)</topic><topic>Paraventricular nucleus</topic><topic>Pharmaceutical industry</topic><topic>Physiological aspects</topic><topic>Physiological responses</topic><topic>RNA</topic><topic>Sensors</topic><topic>Testosterone</topic><topic>Ventricle</topic><topic>Ventricles (cerebral)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Marimo</creatorcontrib><creatorcontrib>Minabe, Shiori</creatorcontrib><creatorcontrib>Sakono, Takahiro</creatorcontrib><creatorcontrib>Magata, Fumie</creatorcontrib><creatorcontrib>Nakamura, Sho</creatorcontrib><creatorcontrib>Watanabe, Youki</creatorcontrib><creatorcontrib>Inoue, Naoko</creatorcontrib><creatorcontrib>Uenoyama, Yoshihisa</creatorcontrib><creatorcontrib>Tsukamura, Hiroko</creatorcontrib><creatorcontrib>Matsuda, Fuko</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Marimo</au><au>Minabe, Shiori</au><au>Sakono, Takahiro</au><au>Magata, Fumie</au><au>Nakamura, Sho</au><au>Watanabe, Youki</au><au>Inoue, Naoko</au><au>Uenoyama, Yoshihisa</au><au>Tsukamura, Hiroko</au><au>Matsuda, Fuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>162</volume><issue>9</issue><spage>1</spage><pages>1-</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine β-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.</abstract><cop>US</cop><pub>Oxford University Press</pub><doi>10.1210/endocr/bqab125</doi><orcidid>https://orcid.org/0000-0002-0833-0309</orcidid><orcidid>https://orcid.org/0000-0003-2775-6652</orcidid><orcidid>https://orcid.org/0000-0001-7304-1637</orcidid><orcidid>https://orcid.org/0000-0001-8396-2421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2021-09, Vol.162 (9), p.1
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_2544878834
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ACTH
Analysis
Arcuate nucleus
Availability
Blood
Blood glucose
Blood levels
Blood sugar
Brain
c-Fos protein
Cell activation
Corticotropin releasing hormone
Dopamine
Dopamine β-monooxygenase
Endocrinology
Ependymal cells
Food
Food intake
Fos protein
Gene expression
Gluconeogenesis
Glucose
Glucose metabolism
Hindbrain
Hypothalamus
Neurons
Neuropeptide Y
Nuclei (cytology)
Paraventricular nucleus
Pharmaceutical industry
Physiological aspects
Physiological responses
RNA
Sensors
Testosterone
Ventricle
Ventricles (cerebral)
title Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20Analysis%20of%20the%20Hindbrain%20Glucose%20Sensor-Hypothalamic%20Neural%20Pathway%20Activated%20by%20Hindbrain%20Glucoprivation&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Sato,%20Marimo&rft.date=2021-09-01&rft.volume=162&rft.issue=9&rft.spage=1&rft.pages=1-&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endocr/bqab125&rft_dat=%3Cgale_proqu%3EA779354092%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891651697&rft_id=info:pmid/&rft_galeid=A779354092&rft_oup_id=10.1210/endocr/bqab125&rfr_iscdi=true