A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting

Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2021-10, Vol.82, p.74-90
Hauptverfasser: Arberet, Simon, Chen, Xiao, Mailhé, Boris, Speier, Peter, Körzdörfer, Gregor, Nittka, Mathias, Meyer, Heiko, Nadar, Mariappan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 74
container_title Magnetic resonance imaging
container_volume 82
creator Arberet, Simon
Chen, Xiao
Mailhé, Boris
Speier, Peter
Körzdörfer, Gregor
Nittka, Mathias
Meyer, Heiko
Nadar, Mariappan S.
description Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.
doi_str_mv 10.1016/j.mri.2021.06.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544458583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X21000977</els_id><sourcerecordid>2544458583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoIG6SH5Cbjr3sRh-r3TU5uaZpCg6FkkBvYiKNbBntypXkQPvro-Cec5pheJ9h5iHkhrOWM97f7tsp-VYwwVvWt4wtz8iCj4Ns1LjsPpEFGyRrBqF-X5DPOe8ZY0pItSDbFT1AghAw0HyA4iFQmC39GqLZ0Qlm72KwNOH2GCD5f2ipL5hq8BXr1MQ5l3Q0xceZTlh20VIXE338Re_9vMV0SH4utbsi5w5Cxuv_9ZI83397Wj80m5_ff6xXm8aIUZQGAQ2DF8GlM240INEp7Je9lHZA0eGA-NJ1DiT0A0OwS45gjOjRWdUJ4eQl-XLae0jxzxFz0ZPPBkOAGeMxa6G6rlOjGmWN8lPUpJhzQqfrsROkv5oz_S5V73WVqt-latbrKrUydycG6w-vHpPOxuNs0Poqo2gb_Qf0G_yqgyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544458583</pqid></control><display><type>article</type><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</creator><creatorcontrib>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</creatorcontrib><description>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2021.06.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Image reconstruction ; Iterative reconstruction ; Magnetic Resonance Fingerprinting ; Magnetic resonance imaging</subject><ispartof>Magnetic resonance imaging, 2021-10, Vol.82, p.74-90</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2021.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Arberet, Simon</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Mailhé, Boris</creatorcontrib><creatorcontrib>Speier, Peter</creatorcontrib><creatorcontrib>Körzdörfer, Gregor</creatorcontrib><creatorcontrib>Nittka, Mathias</creatorcontrib><creatorcontrib>Meyer, Heiko</creatorcontrib><creatorcontrib>Nadar, Mariappan S.</creatorcontrib><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><title>Magnetic resonance imaging</title><description>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</description><subject>Image reconstruction</subject><subject>Iterative reconstruction</subject><subject>Magnetic Resonance Fingerprinting</subject><subject>Magnetic resonance imaging</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVoIG6SH5Cbjr3sRh-r3TU5uaZpCg6FkkBvYiKNbBntypXkQPvro-Cec5pheJ9h5iHkhrOWM97f7tsp-VYwwVvWt4wtz8iCj4Ns1LjsPpEFGyRrBqF-X5DPOe8ZY0pItSDbFT1AghAw0HyA4iFQmC39GqLZ0Qlm72KwNOH2GCD5f2ipL5hq8BXr1MQ5l3Q0xceZTlh20VIXE338Re_9vMV0SH4utbsi5w5Cxuv_9ZI83397Wj80m5_ff6xXm8aIUZQGAQ2DF8GlM240INEp7Je9lHZA0eGA-NJ1DiT0A0OwS45gjOjRWdUJ4eQl-XLae0jxzxFz0ZPPBkOAGeMxa6G6rlOjGmWN8lPUpJhzQqfrsROkv5oz_S5V73WVqt-latbrKrUydycG6w-vHpPOxuNs0Poqo2gb_Qf0G_yqgyE</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Arberet, Simon</creator><creator>Chen, Xiao</creator><creator>Mailhé, Boris</creator><creator>Speier, Peter</creator><creator>Körzdörfer, Gregor</creator><creator>Nittka, Mathias</creator><creator>Meyer, Heiko</creator><creator>Nadar, Mariappan S.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><author>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Image reconstruction</topic><topic>Iterative reconstruction</topic><topic>Magnetic Resonance Fingerprinting</topic><topic>Magnetic resonance imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arberet, Simon</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Mailhé, Boris</creatorcontrib><creatorcontrib>Speier, Peter</creatorcontrib><creatorcontrib>Körzdörfer, Gregor</creatorcontrib><creatorcontrib>Nittka, Mathias</creatorcontrib><creatorcontrib>Meyer, Heiko</creatorcontrib><creatorcontrib>Nadar, Mariappan S.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arberet, Simon</au><au>Chen, Xiao</au><au>Mailhé, Boris</au><au>Speier, Peter</au><au>Körzdörfer, Gregor</au><au>Nittka, Mathias</au><au>Meyer, Heiko</au><au>Nadar, Mariappan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</atitle><jtitle>Magnetic resonance imaging</jtitle><date>2021-10</date><risdate>2021</risdate><volume>82</volume><spage>74</spage><epage>90</epage><pages>74-90</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.mri.2021.06.009</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2021-10, Vol.82, p.74-90
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_2544458583
source Elsevier ScienceDirect Journals Complete
subjects Image reconstruction
Iterative reconstruction
Magnetic Resonance Fingerprinting
Magnetic resonance imaging
title A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20spatial%20and%20Bloch%20manifold%20regularized%20iterative%20reconstruction%20method%20for%20MR%20Fingerprinting&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Arberet,%20Simon&rft.date=2021-10&rft.volume=82&rft.spage=74&rft.epage=90&rft.pages=74-90&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2021.06.009&rft_dat=%3Cproquest_cross%3E2544458583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544458583&rft_id=info:pmid/&rft_els_id=S0730725X21000977&rfr_iscdi=true