A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting
Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2021-10, Vol.82, p.74-90 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 74 |
container_title | Magnetic resonance imaging |
container_volume | 82 |
creator | Arberet, Simon Chen, Xiao Mailhé, Boris Speier, Peter Körzdörfer, Gregor Nittka, Mathias Meyer, Heiko Nadar, Mariappan S. |
description | Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps. |
doi_str_mv | 10.1016/j.mri.2021.06.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2544458583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X21000977</els_id><sourcerecordid>2544458583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoIG6SH5Cbjr3sRh-r3TU5uaZpCg6FkkBvYiKNbBntypXkQPvro-Cec5pheJ9h5iHkhrOWM97f7tsp-VYwwVvWt4wtz8iCj4Ns1LjsPpEFGyRrBqF-X5DPOe8ZY0pItSDbFT1AghAw0HyA4iFQmC39GqLZ0Qlm72KwNOH2GCD5f2ipL5hq8BXr1MQ5l3Q0xceZTlh20VIXE338Re_9vMV0SH4utbsi5w5Cxuv_9ZI83397Wj80m5_ff6xXm8aIUZQGAQ2DF8GlM240INEp7Je9lHZA0eGA-NJ1DiT0A0OwS45gjOjRWdUJ4eQl-XLae0jxzxFz0ZPPBkOAGeMxa6G6rlOjGmWN8lPUpJhzQqfrsROkv5oz_S5V73WVqt-latbrKrUydycG6w-vHpPOxuNs0Poqo2gb_Qf0G_yqgyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544458583</pqid></control><display><type>article</type><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</creator><creatorcontrib>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</creatorcontrib><description>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2021.06.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Image reconstruction ; Iterative reconstruction ; Magnetic Resonance Fingerprinting ; Magnetic resonance imaging</subject><ispartof>Magnetic resonance imaging, 2021-10, Vol.82, p.74-90</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2021.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Arberet, Simon</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Mailhé, Boris</creatorcontrib><creatorcontrib>Speier, Peter</creatorcontrib><creatorcontrib>Körzdörfer, Gregor</creatorcontrib><creatorcontrib>Nittka, Mathias</creatorcontrib><creatorcontrib>Meyer, Heiko</creatorcontrib><creatorcontrib>Nadar, Mariappan S.</creatorcontrib><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><title>Magnetic resonance imaging</title><description>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</description><subject>Image reconstruction</subject><subject>Iterative reconstruction</subject><subject>Magnetic Resonance Fingerprinting</subject><subject>Magnetic resonance imaging</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVoIG6SH5Cbjr3sRh-r3TU5uaZpCg6FkkBvYiKNbBntypXkQPvro-Cec5pheJ9h5iHkhrOWM97f7tsp-VYwwVvWt4wtz8iCj4Ns1LjsPpEFGyRrBqF-X5DPOe8ZY0pItSDbFT1AghAw0HyA4iFQmC39GqLZ0Qlm72KwNOH2GCD5f2ipL5hq8BXr1MQ5l3Q0xceZTlh20VIXE338Re_9vMV0SH4utbsi5w5Cxuv_9ZI83397Wj80m5_ff6xXm8aIUZQGAQ2DF8GlM240INEp7Je9lHZA0eGA-NJ1DiT0A0OwS45gjOjRWdUJ4eQl-XLae0jxzxFz0ZPPBkOAGeMxa6G6rlOjGmWN8lPUpJhzQqfrsROkv5oz_S5V73WVqt-latbrKrUydycG6w-vHpPOxuNs0Poqo2gb_Qf0G_yqgyE</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Arberet, Simon</creator><creator>Chen, Xiao</creator><creator>Mailhé, Boris</creator><creator>Speier, Peter</creator><creator>Körzdörfer, Gregor</creator><creator>Nittka, Mathias</creator><creator>Meyer, Heiko</creator><creator>Nadar, Mariappan S.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</title><author>Arberet, Simon ; Chen, Xiao ; Mailhé, Boris ; Speier, Peter ; Körzdörfer, Gregor ; Nittka, Mathias ; Meyer, Heiko ; Nadar, Mariappan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-eaec0ab213fcf8ca3ef5e69633d7e24e7eeb44fa3a670ead91eacc26efd5422f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Image reconstruction</topic><topic>Iterative reconstruction</topic><topic>Magnetic Resonance Fingerprinting</topic><topic>Magnetic resonance imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arberet, Simon</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Mailhé, Boris</creatorcontrib><creatorcontrib>Speier, Peter</creatorcontrib><creatorcontrib>Körzdörfer, Gregor</creatorcontrib><creatorcontrib>Nittka, Mathias</creatorcontrib><creatorcontrib>Meyer, Heiko</creatorcontrib><creatorcontrib>Nadar, Mariappan S.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arberet, Simon</au><au>Chen, Xiao</au><au>Mailhé, Boris</au><au>Speier, Peter</au><au>Körzdörfer, Gregor</au><au>Nittka, Mathias</au><au>Meyer, Heiko</au><au>Nadar, Mariappan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting</atitle><jtitle>Magnetic resonance imaging</jtitle><date>2021-10</date><risdate>2021</risdate><volume>82</volume><spage>74</spage><epage>90</epage><pages>74-90</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Magnetic Resonance Fingerprinting (MRF) reconstructs tissue maps based on a sequence of very highly undersampled images. In order to be able to perform MRF reconstruction, state-of-the-art MRF methods rely on priors such as the MR physics (Bloch equations) and might also use some additional low-rank or spatial regularization. However to our knowledge these three regularizations are not applied together in a joint reconstruction. The reason is that it is indeed challenging to incorporate effectively multiple regularizations in a single MRF optimization algorithm. As a result most of these methods are not robust to noise especially when the sequence length is short. In this paper, we propose a family of new methods where spatial and low-rank regularizations, in addition to the Bloch manifold regularization, are applied on the images. We show on digital phantom and NIST phantom scans, as well as volunteer scans that the proposed methods bring significant improvement in the quality of the estimated tissue maps.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.mri.2021.06.009</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2021-10, Vol.82, p.74-90 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_2544458583 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Image reconstruction Iterative reconstruction Magnetic Resonance Fingerprinting Magnetic resonance imaging |
title | A parallel spatial and Bloch manifold regularized iterative reconstruction method for MR Fingerprinting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20spatial%20and%20Bloch%20manifold%20regularized%20iterative%20reconstruction%20method%20for%20MR%20Fingerprinting&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Arberet,%20Simon&rft.date=2021-10&rft.volume=82&rft.spage=74&rft.epage=90&rft.pages=74-90&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2021.06.009&rft_dat=%3Cproquest_cross%3E2544458583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544458583&rft_id=info:pmid/&rft_els_id=S0730725X21000977&rfr_iscdi=true |